使用基于局部二进制模式的动态纹理进行事件检测

Yunqian Ma, P. Císar̆
{"title":"使用基于局部二进制模式的动态纹理进行事件检测","authors":"Yunqian Ma, P. Císar̆","doi":"10.1109/CVPRW.2009.5204204","DOIUrl":null,"url":null,"abstract":"Detecting suspicious events from video surveillance cameras has been an important task recently. Many trajectory based descriptors were developed, such as to detect people running or moving in opposite direction. However, these trajectory based descriptors are not working well in the crowd environments like airports, rail stations, because those descriptors assume perfect motion/object segmentation. In this paper, we present an event detection method using dynamic texture descriptor. The dynamic texture descriptor is an extension of the local binary patterns. The image sequences are divided into regions. A flow is formed based on the similarity of the dynamic texture descriptors on the regions. We used real dataset for experiments. The results are promising.","PeriodicalId":431981,"journal":{"name":"2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops","volume":"286 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"34","resultStr":"{\"title\":\"Event detection using local binary pattern based dynamic textures\",\"authors\":\"Yunqian Ma, P. Císar̆\",\"doi\":\"10.1109/CVPRW.2009.5204204\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Detecting suspicious events from video surveillance cameras has been an important task recently. Many trajectory based descriptors were developed, such as to detect people running or moving in opposite direction. However, these trajectory based descriptors are not working well in the crowd environments like airports, rail stations, because those descriptors assume perfect motion/object segmentation. In this paper, we present an event detection method using dynamic texture descriptor. The dynamic texture descriptor is an extension of the local binary patterns. The image sequences are divided into regions. A flow is formed based on the similarity of the dynamic texture descriptors on the regions. We used real dataset for experiments. The results are promising.\",\"PeriodicalId\":431981,\"journal\":{\"name\":\"2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops\",\"volume\":\"286 1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"34\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPRW.2009.5204204\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPRW.2009.5204204","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 34

摘要

从视频监控摄像机中检测可疑事件已成为近年来的一项重要任务。许多基于轨迹的描述符被开发出来,例如检测在相反方向奔跑或移动的人。然而,这些基于轨迹的描述符在机场、火车站等人群环境中并不能很好地工作,因为这些描述符假设了完美的运动/物体分割。本文提出了一种基于动态纹理描述符的事件检测方法。动态纹理描述符是局部二进制模式的扩展。将图像序列划分为多个区域。基于区域上动态纹理描述符的相似性形成流。我们使用真实数据集进行实验。结果是有希望的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Event detection using local binary pattern based dynamic textures
Detecting suspicious events from video surveillance cameras has been an important task recently. Many trajectory based descriptors were developed, such as to detect people running or moving in opposite direction. However, these trajectory based descriptors are not working well in the crowd environments like airports, rail stations, because those descriptors assume perfect motion/object segmentation. In this paper, we present an event detection method using dynamic texture descriptor. The dynamic texture descriptor is an extension of the local binary patterns. The image sequences are divided into regions. A flow is formed based on the similarity of the dynamic texture descriptors on the regions. We used real dataset for experiments. The results are promising.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Robust real-time 3D modeling of static scenes using solely a Time-of-Flight sensor Image matching in large scale indoor environment Learning to segment using machine-learned penalized logistic models Modeling and exploiting the spatio-temporal facial action dependencies for robust spontaneous facial expression recognition Fuzzy statistical modeling of dynamic backgrounds for moving object detection in infrared videos
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1