使用分类法对不精确的数据执行聚合查询

Atanu Roy, Chandrima Sarkar, R. Angryk
{"title":"使用分类法对不精确的数据执行聚合查询","authors":"Atanu Roy, Chandrima Sarkar, R. Angryk","doi":"10.1109/ICDMW.2010.173","DOIUrl":null,"url":null,"abstract":"In this paper, we put forward our approach for answering aggregated queries over imprecise data using domain specific taxonomies. A new concept we call the weighted hierarchical hyper graph has been introduced, which helps in answering aggregated queries when dealing with imprecise databases. We assume that the existence of a knowledge base is permanent and independent of the imprecision in the database. We use this concept to build a temporary database known as the extended database and use the extended database to build the marginal database, which efficiently answers aggregated queries over an imprecise data.","PeriodicalId":170201,"journal":{"name":"2010 IEEE International Conference on Data Mining Workshops","volume":"211 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Using Taxonomies to Perform Aggregated Querying over Imprecise Data\",\"authors\":\"Atanu Roy, Chandrima Sarkar, R. Angryk\",\"doi\":\"10.1109/ICDMW.2010.173\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we put forward our approach for answering aggregated queries over imprecise data using domain specific taxonomies. A new concept we call the weighted hierarchical hyper graph has been introduced, which helps in answering aggregated queries when dealing with imprecise databases. We assume that the existence of a knowledge base is permanent and independent of the imprecision in the database. We use this concept to build a temporary database known as the extended database and use the extended database to build the marginal database, which efficiently answers aggregated queries over an imprecise data.\",\"PeriodicalId\":170201,\"journal\":{\"name\":\"2010 IEEE International Conference on Data Mining Workshops\",\"volume\":\"211 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE International Conference on Data Mining Workshops\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDMW.2010.173\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Data Mining Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDMW.2010.173","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在本文中,我们提出了使用特定于领域的分类法来回答对不精确数据的聚合查询的方法。我们引入了一个新的概念,我们称之为加权层次超图,它有助于在处理不精确的数据库时回答聚合查询。我们假设知识库的存在是永久的,并且独立于数据库中的不精确性。我们使用这个概念来构建一个临时数据库,称为扩展数据库,并使用扩展数据库来构建边缘数据库,它有效地回答对不精确数据的聚合查询。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Using Taxonomies to Perform Aggregated Querying over Imprecise Data
In this paper, we put forward our approach for answering aggregated queries over imprecise data using domain specific taxonomies. A new concept we call the weighted hierarchical hyper graph has been introduced, which helps in answering aggregated queries when dealing with imprecise databases. We assume that the existence of a knowledge base is permanent and independent of the imprecision in the database. We use this concept to build a temporary database known as the extended database and use the extended database to build the marginal database, which efficiently answers aggregated queries over an imprecise data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Quantum Path Integral Inspired Query Sequence Suggestion for User Search Task Simplification PTCR-Miner: Progressive Temporal Class Rule Mining for Multivariate Temporal Data Classification Bridging Folksonomies and Domain Ontologies: Getting Out Non-taxonomic Relations SIMPLE: Interactive Analytics on Patent Data Parallel EM-Clustering: Fast Convergence by Asynchronous Model Updates
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1