{"title":"金属泡沫和翅片金属泡沫散热器中的浮力诱导对流©","authors":"A. Bhattacharya, R. Mahajan","doi":"10.1115/imece2000-1544","DOIUrl":null,"url":null,"abstract":"\n In this paper, we present our recent experimental results on buoyancy induced convection in metal foams of different pore densities (corresponding to 5, 10, 20 and 40 pores per inch) and porosities (0.89–0.96). The results show that compared to a hot surface facing up, the heat transfer coefficients in these heat sinks are 5 to 6 times higher. However, when compared to commercially available heat sinks of similar dimensions, the enhancement is found to be marginal. The experimental results also show that for a given pore size, the heat transfer rate increases with porosity suggesting the dominant role played by conduction in enhancing heat transfer. On the other hand, if the porosity is held constant, the heat transfer rate is found to be lower at higher pore densities. This can be attributed to the higher permeability with the larger pores, which allows higher entrainment of air through the porous medium. An empirical correlation, developed for the estimation of Nusselt number in terms of Rayleigh and Darcy numbers, is found to be in good agreement with the experimental data with a maximum error of 10%.\n We also report our results on novel finned metal foam heat sinks© in natural convection. Experiments were conducted on aluminum foams of 90% porosity with 5 and 20 PPI (pores per inch) with one, two, and four aluminum fins inserted in the foam. All these heat sinks were fabricated in-house. The results show that the finned metal foam heat sinks© are superior in thermal performance compared to the normal metal foam and conventional finned heat sinks. The heat transfer increases with increase in the number of fins. However, the relative enhancement is found to decrease with each additional fin. The indication is that there exists an optimum number of fins beyond which the enhancement in heat transfer due to increased surface area is offset by the retarding effect of overlapping thermal boundary layers. Similar to normal metal foams, the 5 PPI samples are found to give higher values of the heat transfer coefficient compared to the 20 PPI samples due to higher permeability of the porous medium. Future work is planned to arrive at the optimal heat sink configuration for even larger enhancement in heat transfer.","PeriodicalId":120929,"journal":{"name":"Heat Transfer: Volume 4","volume":"94 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Buoyancy-Induced Convection in Metal Foam and Finned Metal Foam Heat Sinks©\",\"authors\":\"A. Bhattacharya, R. Mahajan\",\"doi\":\"10.1115/imece2000-1544\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n In this paper, we present our recent experimental results on buoyancy induced convection in metal foams of different pore densities (corresponding to 5, 10, 20 and 40 pores per inch) and porosities (0.89–0.96). The results show that compared to a hot surface facing up, the heat transfer coefficients in these heat sinks are 5 to 6 times higher. However, when compared to commercially available heat sinks of similar dimensions, the enhancement is found to be marginal. The experimental results also show that for a given pore size, the heat transfer rate increases with porosity suggesting the dominant role played by conduction in enhancing heat transfer. On the other hand, if the porosity is held constant, the heat transfer rate is found to be lower at higher pore densities. This can be attributed to the higher permeability with the larger pores, which allows higher entrainment of air through the porous medium. An empirical correlation, developed for the estimation of Nusselt number in terms of Rayleigh and Darcy numbers, is found to be in good agreement with the experimental data with a maximum error of 10%.\\n We also report our results on novel finned metal foam heat sinks© in natural convection. Experiments were conducted on aluminum foams of 90% porosity with 5 and 20 PPI (pores per inch) with one, two, and four aluminum fins inserted in the foam. All these heat sinks were fabricated in-house. The results show that the finned metal foam heat sinks© are superior in thermal performance compared to the normal metal foam and conventional finned heat sinks. The heat transfer increases with increase in the number of fins. However, the relative enhancement is found to decrease with each additional fin. The indication is that there exists an optimum number of fins beyond which the enhancement in heat transfer due to increased surface area is offset by the retarding effect of overlapping thermal boundary layers. Similar to normal metal foams, the 5 PPI samples are found to give higher values of the heat transfer coefficient compared to the 20 PPI samples due to higher permeability of the porous medium. Future work is planned to arrive at the optimal heat sink configuration for even larger enhancement in heat transfer.\",\"PeriodicalId\":120929,\"journal\":{\"name\":\"Heat Transfer: Volume 4\",\"volume\":\"94 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Heat Transfer: Volume 4\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/imece2000-1544\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Heat Transfer: Volume 4","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/imece2000-1544","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Buoyancy-Induced Convection in Metal Foam and Finned Metal Foam Heat Sinks©
In this paper, we present our recent experimental results on buoyancy induced convection in metal foams of different pore densities (corresponding to 5, 10, 20 and 40 pores per inch) and porosities (0.89–0.96). The results show that compared to a hot surface facing up, the heat transfer coefficients in these heat sinks are 5 to 6 times higher. However, when compared to commercially available heat sinks of similar dimensions, the enhancement is found to be marginal. The experimental results also show that for a given pore size, the heat transfer rate increases with porosity suggesting the dominant role played by conduction in enhancing heat transfer. On the other hand, if the porosity is held constant, the heat transfer rate is found to be lower at higher pore densities. This can be attributed to the higher permeability with the larger pores, which allows higher entrainment of air through the porous medium. An empirical correlation, developed for the estimation of Nusselt number in terms of Rayleigh and Darcy numbers, is found to be in good agreement with the experimental data with a maximum error of 10%.
We also report our results on novel finned metal foam heat sinks© in natural convection. Experiments were conducted on aluminum foams of 90% porosity with 5 and 20 PPI (pores per inch) with one, two, and four aluminum fins inserted in the foam. All these heat sinks were fabricated in-house. The results show that the finned metal foam heat sinks© are superior in thermal performance compared to the normal metal foam and conventional finned heat sinks. The heat transfer increases with increase in the number of fins. However, the relative enhancement is found to decrease with each additional fin. The indication is that there exists an optimum number of fins beyond which the enhancement in heat transfer due to increased surface area is offset by the retarding effect of overlapping thermal boundary layers. Similar to normal metal foams, the 5 PPI samples are found to give higher values of the heat transfer coefficient compared to the 20 PPI samples due to higher permeability of the porous medium. Future work is planned to arrive at the optimal heat sink configuration for even larger enhancement in heat transfer.