用虚幻引擎合成属性进行细粒度活动分析

Tae Soo Kim, Michael Peven, Weichao Qiu, A. Yuille, Gregory Hager
{"title":"用虚幻引擎合成属性进行细粒度活动分析","authors":"Tae Soo Kim, Michael Peven, Weichao Qiu, A. Yuille, Gregory Hager","doi":"10.1109/WACVW.2019.00013","DOIUrl":null,"url":null,"abstract":"We examine the problem of activity recognition in video using simulated data for training. In contrast to the expensive task of obtaining accurate labels from real data, synthetic data creation is not only fast and scalable, but provides ground-truth labels for more than just the activities of interest, including segmentation masks, 3D object keypoints, and more. We aim to successfully transfer a model trained on synthetic data to work on video in the real world. In this work, we provide a method of transferring from synthetic to real at intermediate representations of a video. We wish to perform activity recognition from the low-dimensional latent representation of a scene as a collection of visual attributes. As the ground-truth data does not exist in the ActEV dataset for attributes of interest, specifically orientation of cars in the ground-plane with respect to the camera, we synthesize this data. We show how we can successfully transfer a car orientation classifier, and use its predictions in our defined set of visual attributes to classify actions in video.","PeriodicalId":254512,"journal":{"name":"2019 IEEE Winter Applications of Computer Vision Workshops (WACVW)","volume":"15 27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Synthesizing Attributes with Unreal Engine for Fine-grained Activity Analysis\",\"authors\":\"Tae Soo Kim, Michael Peven, Weichao Qiu, A. Yuille, Gregory Hager\",\"doi\":\"10.1109/WACVW.2019.00013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We examine the problem of activity recognition in video using simulated data for training. In contrast to the expensive task of obtaining accurate labels from real data, synthetic data creation is not only fast and scalable, but provides ground-truth labels for more than just the activities of interest, including segmentation masks, 3D object keypoints, and more. We aim to successfully transfer a model trained on synthetic data to work on video in the real world. In this work, we provide a method of transferring from synthetic to real at intermediate representations of a video. We wish to perform activity recognition from the low-dimensional latent representation of a scene as a collection of visual attributes. As the ground-truth data does not exist in the ActEV dataset for attributes of interest, specifically orientation of cars in the ground-plane with respect to the camera, we synthesize this data. We show how we can successfully transfer a car orientation classifier, and use its predictions in our defined set of visual attributes to classify actions in video.\",\"PeriodicalId\":254512,\"journal\":{\"name\":\"2019 IEEE Winter Applications of Computer Vision Workshops (WACVW)\",\"volume\":\"15 27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE Winter Applications of Computer Vision Workshops (WACVW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WACVW.2019.00013\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Winter Applications of Computer Vision Workshops (WACVW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WACVW.2019.00013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

我们使用模拟训练数据来研究视频中的活动识别问题。与从真实数据中获得准确标签的昂贵任务相比,合成数据创建不仅快速且可扩展,而且不仅为感兴趣的活动提供了真实的标签,包括分割掩码、3D对象关键点等。我们的目标是成功地将一个经过合成数据训练的模型转移到现实世界的视频上。在这项工作中,我们提供了一种在视频的中间表示中从合成到真实的转换方法。我们希望将场景的低维潜在表示作为视觉属性的集合进行活动识别。由于ActEV数据集中不存在感兴趣属性的地面真实数据,特别是汽车在地平面上相对于相机的方向,因此我们综合了这些数据。我们展示了如何成功地转移汽车方向分类器,并在我们定义的视觉属性集中使用其预测来对视频中的动作进行分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Synthesizing Attributes with Unreal Engine for Fine-grained Activity Analysis
We examine the problem of activity recognition in video using simulated data for training. In contrast to the expensive task of obtaining accurate labels from real data, synthetic data creation is not only fast and scalable, but provides ground-truth labels for more than just the activities of interest, including segmentation masks, 3D object keypoints, and more. We aim to successfully transfer a model trained on synthetic data to work on video in the real world. In this work, we provide a method of transferring from synthetic to real at intermediate representations of a video. We wish to perform activity recognition from the low-dimensional latent representation of a scene as a collection of visual attributes. As the ground-truth data does not exist in the ActEV dataset for attributes of interest, specifically orientation of cars in the ground-plane with respect to the camera, we synthesize this data. We show how we can successfully transfer a car orientation classifier, and use its predictions in our defined set of visual attributes to classify actions in video.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Can Liveness Be Automatically Detected from Latent Fingerprints? Novel Activities Detection Algorithm in Extended Videos Exploring Automatic Face Recognition on Match Performance and Gender Bias for Children MFC Datasets: Large-Scale Benchmark Datasets for Media Forensic Challenge Evaluation Sponsors and Corporate Donors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1