鲁棒无线传感器网络路由协议的形式化建模

K. Saghar, W. Henderson, D. Kendall, A. Bouridane
{"title":"鲁棒无线传感器网络路由协议的形式化建模","authors":"K. Saghar, W. Henderson, D. Kendall, A. Bouridane","doi":"10.1109/AHS.2010.5546247","DOIUrl":null,"url":null,"abstract":"Because of their low cost, small size, low resources and self-organizing nature a Wireless Sensor Network (WSN) is a potential solution in hostile environments including military applications. However, the broadcasting nature of radio transmission; their limited computing, power and communication resources; unattended and potentially hostile nature of the environment they operate in make WSNs prone to Denial of Service (DoS) attacks. Although many schemes have been proposed to address DoS attacks their effectiveness is yet to be proven. The traditional methods used (i.e. visual inspection, computer simulations and hardware implementations) can only detect errors but cannot verify that the whole system is error free. Therefore, new techniques to automatically determine the worst cases and hidden errors in WSNs are much desired. After an initial investigation using a formal verification which clearly shows that Arrive routing protocol is vulnerable to different DoS attacks, this paper proposes a method for its security. The finding contradicts the claim of the developers of Arrive that it is immune to black hole attacks. Several other DoS attacks were also found to be successful in Arrive routing protocol. The formal model generates the trace to confirm how an attack is possible in the protocol. However, it was found that INA attacks are addressed by Arrive protocol. To our best knowledge the results discussed in this paper have not been presented, proved or published before.","PeriodicalId":101655,"journal":{"name":"2010 NASA/ESA Conference on Adaptive Hardware and Systems","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2010-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":"{\"title\":\"Formal modelling of a robust Wireless Sensor Network routing protocol\",\"authors\":\"K. Saghar, W. Henderson, D. Kendall, A. Bouridane\",\"doi\":\"10.1109/AHS.2010.5546247\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Because of their low cost, small size, low resources and self-organizing nature a Wireless Sensor Network (WSN) is a potential solution in hostile environments including military applications. However, the broadcasting nature of radio transmission; their limited computing, power and communication resources; unattended and potentially hostile nature of the environment they operate in make WSNs prone to Denial of Service (DoS) attacks. Although many schemes have been proposed to address DoS attacks their effectiveness is yet to be proven. The traditional methods used (i.e. visual inspection, computer simulations and hardware implementations) can only detect errors but cannot verify that the whole system is error free. Therefore, new techniques to automatically determine the worst cases and hidden errors in WSNs are much desired. After an initial investigation using a formal verification which clearly shows that Arrive routing protocol is vulnerable to different DoS attacks, this paper proposes a method for its security. The finding contradicts the claim of the developers of Arrive that it is immune to black hole attacks. Several other DoS attacks were also found to be successful in Arrive routing protocol. The formal model generates the trace to confirm how an attack is possible in the protocol. However, it was found that INA attacks are addressed by Arrive protocol. To our best knowledge the results discussed in this paper have not been presented, proved or published before.\",\"PeriodicalId\":101655,\"journal\":{\"name\":\"2010 NASA/ESA Conference on Adaptive Hardware and Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"29\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 NASA/ESA Conference on Adaptive Hardware and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AHS.2010.5546247\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 NASA/ESA Conference on Adaptive Hardware and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AHS.2010.5546247","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 29

摘要

由于其低成本、小体积、低资源和自组织的特性,无线传感器网络(WSN)在包括军事应用在内的敌对环境中具有潜在的解决方案。但是,无线电传输的广播性质;他们有限的计算、能力和通信资源;无人值守和潜在的敌对环境使wsn容易受到拒绝服务(DoS)攻击。尽管已经提出了许多解决DoS攻击的方案,但它们的有效性尚未得到证实。使用的传统方法(即目视检查,计算机模拟和硬件实现)只能检测错误,但不能验证整个系统是无错误的。因此,迫切需要新的技术来自动确定wsn中的最坏情况和隐藏错误。本文对到达路由协议进行了初步调查,并利用形式化验证清楚地表明到达路由协议容易受到各种DoS攻击,提出了一种安全方法。这一发现与“到达”的开发者声称它不受黑洞攻击的说法相矛盾。在到达路由协议中还发现了其他几次DoS攻击。形式化模型生成跟踪,以确认在协议中攻击是如何可能的。然而,发现INA攻击是通过到达协议解决的。据我们所知,本文讨论的结果以前没有被提出、证明或发表过。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Formal modelling of a robust Wireless Sensor Network routing protocol
Because of their low cost, small size, low resources and self-organizing nature a Wireless Sensor Network (WSN) is a potential solution in hostile environments including military applications. However, the broadcasting nature of radio transmission; their limited computing, power and communication resources; unattended and potentially hostile nature of the environment they operate in make WSNs prone to Denial of Service (DoS) attacks. Although many schemes have been proposed to address DoS attacks their effectiveness is yet to be proven. The traditional methods used (i.e. visual inspection, computer simulations and hardware implementations) can only detect errors but cannot verify that the whole system is error free. Therefore, new techniques to automatically determine the worst cases and hidden errors in WSNs are much desired. After an initial investigation using a formal verification which clearly shows that Arrive routing protocol is vulnerable to different DoS attacks, this paper proposes a method for its security. The finding contradicts the claim of the developers of Arrive that it is immune to black hole attacks. Several other DoS attacks were also found to be successful in Arrive routing protocol. The formal model generates the trace to confirm how an attack is possible in the protocol. However, it was found that INA attacks are addressed by Arrive protocol. To our best knowledge the results discussed in this paper have not been presented, proved or published before.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Adaptive and evolvable hardware security architectures Ultimate design security in self-reconfiguring non-volatile environments SDVMR – managing heterogeneity in space and time on multicore SoCs Automated synthesis of 8-output voltage distributor using incremental, evolution An adaptable low density parity check (LDPC) engine for space based communication systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1