利用深度学习实时恢复移动图像中的高质量失真

T. Koçak, Cagkan Ciloglu
{"title":"利用深度学习实时恢复移动图像中的高质量失真","authors":"T. Koçak, Cagkan Ciloglu","doi":"10.1109/AIKE48582.2020.00025","DOIUrl":null,"url":null,"abstract":"Frames provided by camera on mobile devices may be distorted because of camera defects and/or weather conditions such as rain and snow. These distortions affect image classifiers. This paper proposes using deep-learning architectures to restore quality distortions in real-time mobile video for image classifiers. An iOS based app is developed using CoreML to show that deep convolutional auto-encoder (CAE) based methods can be used to restore picture quality.","PeriodicalId":370671,"journal":{"name":"2020 IEEE Third International Conference on Artificial Intelligence and Knowledge Engineering (AIKE)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Real-time Restoration of Quality Distortions in Mobile Images using Deep Learning\",\"authors\":\"T. Koçak, Cagkan Ciloglu\",\"doi\":\"10.1109/AIKE48582.2020.00025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Frames provided by camera on mobile devices may be distorted because of camera defects and/or weather conditions such as rain and snow. These distortions affect image classifiers. This paper proposes using deep-learning architectures to restore quality distortions in real-time mobile video for image classifiers. An iOS based app is developed using CoreML to show that deep convolutional auto-encoder (CAE) based methods can be used to restore picture quality.\",\"PeriodicalId\":370671,\"journal\":{\"name\":\"2020 IEEE Third International Conference on Artificial Intelligence and Knowledge Engineering (AIKE)\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE Third International Conference on Artificial Intelligence and Knowledge Engineering (AIKE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AIKE48582.2020.00025\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Third International Conference on Artificial Intelligence and Knowledge Engineering (AIKE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AIKE48582.2020.00025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

由于相机缺陷和/或雨雪等天气条件,移动设备上的相机提供的画面可能会失真。这些失真影响图像分类器。本文提出使用深度学习架构来恢复图像分类器在实时移动视频中的质量失真。使用CoreML开发了一个基于iOS的应用程序,以显示基于深度卷积自编码器(CAE)的方法可以用于恢复图像质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Real-time Restoration of Quality Distortions in Mobile Images using Deep Learning
Frames provided by camera on mobile devices may be distorted because of camera defects and/or weather conditions such as rain and snow. These distortions affect image classifiers. This paper proposes using deep-learning architectures to restore quality distortions in real-time mobile video for image classifiers. An iOS based app is developed using CoreML to show that deep convolutional auto-encoder (CAE) based methods can be used to restore picture quality.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Artificial Intelligence Design on Embedded Board with Edge Computing for Vehicle Applications Analysis of Permission Selection Techniques in Machine Learning-based Malicious App Detection Using Cultural Algorithms with Common Value Auctions to Provide Sustainability in Complex Dynamic Environments Knowledge Graph Visualization: Challenges, Framework, and Implementation Evaluation of Classification algorithms for Distributed Denial of Service Attack Detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1