一类严格反馈离散非线性系统的反步自适应神经网络控制

S. Ge, Guangyong Li, Tong-heng Lee
{"title":"一类严格反馈离散非线性系统的反步自适应神经网络控制","authors":"S. Ge, Guangyong Li, Tong-heng Lee","doi":"10.1109/CDC.2001.980302","DOIUrl":null,"url":null,"abstract":"The state feedback controller is studied for a class of strict-feedback discrete-time nonlinear systems in the presence of bounded disturbances. A Lyapunov-based full state feedback neural network control structure is presented via backstepping, which solves the noncausal problem in the discrete-time backstepping design procedure. The closed-loop system is proven to be semi-globally uniformly ultimately bounded. An arbitrarily small tracking error can be achieved if the size of the neural network is chosen large enough, and the control performance of the closed-loop system is guaranteed by suitably choosing the design parameters.","PeriodicalId":131411,"journal":{"name":"Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228)","volume":"80 4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"209","resultStr":"{\"title\":\"Adaptive NN control for a class of strict-feedback discrete-time nonlinear systems via backstepping\",\"authors\":\"S. Ge, Guangyong Li, Tong-heng Lee\",\"doi\":\"10.1109/CDC.2001.980302\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The state feedback controller is studied for a class of strict-feedback discrete-time nonlinear systems in the presence of bounded disturbances. A Lyapunov-based full state feedback neural network control structure is presented via backstepping, which solves the noncausal problem in the discrete-time backstepping design procedure. The closed-loop system is proven to be semi-globally uniformly ultimately bounded. An arbitrarily small tracking error can be achieved if the size of the neural network is chosen large enough, and the control performance of the closed-loop system is guaranteed by suitably choosing the design parameters.\",\"PeriodicalId\":131411,\"journal\":{\"name\":\"Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228)\",\"volume\":\"80 4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"209\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CDC.2001.980302\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CDC.2001.980302","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 209

摘要

研究了一类存在有界扰动的严格反馈离散非线性系统的状态反馈控制器。通过反步设计,提出了一种基于lyapunov的全状态反馈神经网络控制结构,解决了离散时间反步设计过程中的非因果问题。证明了闭环系统是半全局一致最终有界的。如果选择足够大的神经网络,可以实现任意小的跟踪误差,并通过适当选择设计参数来保证闭环系统的控制性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Adaptive NN control for a class of strict-feedback discrete-time nonlinear systems via backstepping
The state feedback controller is studied for a class of strict-feedback discrete-time nonlinear systems in the presence of bounded disturbances. A Lyapunov-based full state feedback neural network control structure is presented via backstepping, which solves the noncausal problem in the discrete-time backstepping design procedure. The closed-loop system is proven to be semi-globally uniformly ultimately bounded. An arbitrarily small tracking error can be achieved if the size of the neural network is chosen large enough, and the control performance of the closed-loop system is guaranteed by suitably choosing the design parameters.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Linear symmetry of nonlinear systems On-line predictive techniques for "differentiated services" networks The Lie algebra structure of spin systems and their controllability properties Time-delayed chaos control with repetitive learning Robust nonlinear motion control of a helicopter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1