使用位置敏感字母n-gram匹配的手写识别

A. El-Nasan, S. Veeramachaneni, G. Nagy
{"title":"使用位置敏感字母n-gram匹配的手写识别","authors":"A. El-Nasan, S. Veeramachaneni, G. Nagy","doi":"10.1109/ICDAR.2003.1227730","DOIUrl":null,"url":null,"abstract":"We propose further improvement of a handwriting recognition method that avoids segmentation while able to recognize words that were never seen before in handwritten form. This method is based on the fact that few pairs of English words share exactly the same set of letter bigrams and even fewer share longer n-grams. The lexical n-gram matches between every word in a lexicon and a set of reference words can be precomputed. A position-based match function then detects the matches between the handwritten signal of a query word and each reference word. We show that with a reasonable set of reference words, the recognition of lexicon words exceeds 90%.","PeriodicalId":249193,"journal":{"name":"Seventh International Conference on Document Analysis and Recognition, 2003. Proceedings.","volume":"261 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Handwriting recognition using position sensitive letter n-gram matching\",\"authors\":\"A. El-Nasan, S. Veeramachaneni, G. Nagy\",\"doi\":\"10.1109/ICDAR.2003.1227730\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose further improvement of a handwriting recognition method that avoids segmentation while able to recognize words that were never seen before in handwritten form. This method is based on the fact that few pairs of English words share exactly the same set of letter bigrams and even fewer share longer n-grams. The lexical n-gram matches between every word in a lexicon and a set of reference words can be precomputed. A position-based match function then detects the matches between the handwritten signal of a query word and each reference word. We show that with a reasonable set of reference words, the recognition of lexicon words exceeds 90%.\",\"PeriodicalId\":249193,\"journal\":{\"name\":\"Seventh International Conference on Document Analysis and Recognition, 2003. Proceedings.\",\"volume\":\"261 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-08-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Seventh International Conference on Document Analysis and Recognition, 2003. Proceedings.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDAR.2003.1227730\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Seventh International Conference on Document Analysis and Recognition, 2003. Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDAR.2003.1227730","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

我们提出了进一步改进的手写识别方法,避免了分割,同时能够识别以前从未见过的手写形式的单词。这种方法是基于这样一个事实:很少有对英语单词具有完全相同的字母组合,更少的单词具有更长的n-gram。词汇库中每个单词与一组参考单词之间的词汇n-gram匹配可以预先计算。然后,基于位置的匹配函数检测查询词的手写信号与每个参考词之间的匹配。研究表明,在合理的参考词集合下,词典词的识别率超过90%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Handwriting recognition using position sensitive letter n-gram matching
We propose further improvement of a handwriting recognition method that avoids segmentation while able to recognize words that were never seen before in handwritten form. This method is based on the fact that few pairs of English words share exactly the same set of letter bigrams and even fewer share longer n-grams. The lexical n-gram matches between every word in a lexicon and a set of reference words can be precomputed. A position-based match function then detects the matches between the handwritten signal of a query word and each reference word. We show that with a reasonable set of reference words, the recognition of lexicon words exceeds 90%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Impact of imperfect OCR on part-of-speech tagging Writer identification using innovative binarised features of handwritten numerals Word searching in CCITT group 4 compressed document images Exploiting reliability for dynamic selection of classi .ers by means of genetic algorithms Investigation of off-line Japanese signature verification using a pattern matching
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1