{"title":"使用位置敏感字母n-gram匹配的手写识别","authors":"A. El-Nasan, S. Veeramachaneni, G. Nagy","doi":"10.1109/ICDAR.2003.1227730","DOIUrl":null,"url":null,"abstract":"We propose further improvement of a handwriting recognition method that avoids segmentation while able to recognize words that were never seen before in handwritten form. This method is based on the fact that few pairs of English words share exactly the same set of letter bigrams and even fewer share longer n-grams. The lexical n-gram matches between every word in a lexicon and a set of reference words can be precomputed. A position-based match function then detects the matches between the handwritten signal of a query word and each reference word. We show that with a reasonable set of reference words, the recognition of lexicon words exceeds 90%.","PeriodicalId":249193,"journal":{"name":"Seventh International Conference on Document Analysis and Recognition, 2003. Proceedings.","volume":"261 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Handwriting recognition using position sensitive letter n-gram matching\",\"authors\":\"A. El-Nasan, S. Veeramachaneni, G. Nagy\",\"doi\":\"10.1109/ICDAR.2003.1227730\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose further improvement of a handwriting recognition method that avoids segmentation while able to recognize words that were never seen before in handwritten form. This method is based on the fact that few pairs of English words share exactly the same set of letter bigrams and even fewer share longer n-grams. The lexical n-gram matches between every word in a lexicon and a set of reference words can be precomputed. A position-based match function then detects the matches between the handwritten signal of a query word and each reference word. We show that with a reasonable set of reference words, the recognition of lexicon words exceeds 90%.\",\"PeriodicalId\":249193,\"journal\":{\"name\":\"Seventh International Conference on Document Analysis and Recognition, 2003. Proceedings.\",\"volume\":\"261 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-08-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Seventh International Conference on Document Analysis and Recognition, 2003. Proceedings.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDAR.2003.1227730\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Seventh International Conference on Document Analysis and Recognition, 2003. Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDAR.2003.1227730","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Handwriting recognition using position sensitive letter n-gram matching
We propose further improvement of a handwriting recognition method that avoids segmentation while able to recognize words that were never seen before in handwritten form. This method is based on the fact that few pairs of English words share exactly the same set of letter bigrams and even fewer share longer n-grams. The lexical n-gram matches between every word in a lexicon and a set of reference words can be precomputed. A position-based match function then detects the matches between the handwritten signal of a query word and each reference word. We show that with a reasonable set of reference words, the recognition of lexicon words exceeds 90%.