道路检测和分割的多模态系统

Xiao Hu, S. R. Florez, A. Gepperth
{"title":"道路检测和分割的多模态系统","authors":"Xiao Hu, S. R. Florez, A. Gepperth","doi":"10.1109/IVS.2014.6856466","DOIUrl":null,"url":null,"abstract":"Reliable road detection is a key issue for modern Intelligent Vehicles, since it can help to identify the driv-able area as well as boosting other perception functions like object detection. However, real environments present several challenges like illumination changes and varying weather conditions. We propose a multi-modal road detection and segmentation method based on monocular images and HD multi-layer LIDAR data (3D point cloud). This algorithm consists of three stages: extraction of ground points from multilayer LIDAR, transformation of color camera information to an illumination-invariant representation, and lastly the segmentation of the road area. For the first module, the core function is to extract the ground points from LIDAR data. To this end a road boundary detection is performed based on histogram analysis, then a plane estimation using RANSAC, and a ground point extraction according to the point-to-plane distance. In the second module, an image representation of illumination-invariant features is computed simultaneously. Ground points are projected to image plane and then used to compute a road probability map using a Gaussian model. The combination of these modalities improves the robustness of the whole system and reduces the overall computational time, since the first two modules can be run in parallel. Quantitative experiments carried on the public KITTI dataset enhanced by road annotations confirmed the effectiveness of the proposed method.","PeriodicalId":254500,"journal":{"name":"2014 IEEE Intelligent Vehicles Symposium Proceedings","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"44","resultStr":"{\"title\":\"A multi-modal system for road detection and segmentation\",\"authors\":\"Xiao Hu, S. R. Florez, A. Gepperth\",\"doi\":\"10.1109/IVS.2014.6856466\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Reliable road detection is a key issue for modern Intelligent Vehicles, since it can help to identify the driv-able area as well as boosting other perception functions like object detection. However, real environments present several challenges like illumination changes and varying weather conditions. We propose a multi-modal road detection and segmentation method based on monocular images and HD multi-layer LIDAR data (3D point cloud). This algorithm consists of three stages: extraction of ground points from multilayer LIDAR, transformation of color camera information to an illumination-invariant representation, and lastly the segmentation of the road area. For the first module, the core function is to extract the ground points from LIDAR data. To this end a road boundary detection is performed based on histogram analysis, then a plane estimation using RANSAC, and a ground point extraction according to the point-to-plane distance. In the second module, an image representation of illumination-invariant features is computed simultaneously. Ground points are projected to image plane and then used to compute a road probability map using a Gaussian model. The combination of these modalities improves the robustness of the whole system and reduces the overall computational time, since the first two modules can be run in parallel. Quantitative experiments carried on the public KITTI dataset enhanced by road annotations confirmed the effectiveness of the proposed method.\",\"PeriodicalId\":254500,\"journal\":{\"name\":\"2014 IEEE Intelligent Vehicles Symposium Proceedings\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"44\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE Intelligent Vehicles Symposium Proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IVS.2014.6856466\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Intelligent Vehicles Symposium Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IVS.2014.6856466","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 44

摘要

可靠的道路检测是现代智能汽车的一个关键问题,因为它可以帮助识别可驾驶区域,并增强物体检测等其他感知功能。然而,在真实的环境中存在一些挑战,如光照变化和天气条件变化。提出了一种基于单眼图像和高清多层激光雷达数据(三维点云)的多模态道路检测与分割方法。该算法包括三个阶段:从多层激光雷达中提取地点,将彩色摄像机信息转换为光照不变表示,最后分割道路区域。第一个模块的核心功能是从LIDAR数据中提取地面点。为此,首先基于直方图分析进行道路边界检测,然后使用RANSAC进行平面估计,最后根据点面距离提取地面点。在第二个模块中,同时计算光照不变特征的图像表示。将地面点投影到图像平面上,然后利用高斯模型计算道路概率图。这些模式的组合提高了整个系统的鲁棒性,并减少了总体计算时间,因为前两个模块可以并行运行。在经过道路标注增强的公共KITTI数据集上进行的定量实验验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A multi-modal system for road detection and segmentation
Reliable road detection is a key issue for modern Intelligent Vehicles, since it can help to identify the driv-able area as well as boosting other perception functions like object detection. However, real environments present several challenges like illumination changes and varying weather conditions. We propose a multi-modal road detection and segmentation method based on monocular images and HD multi-layer LIDAR data (3D point cloud). This algorithm consists of three stages: extraction of ground points from multilayer LIDAR, transformation of color camera information to an illumination-invariant representation, and lastly the segmentation of the road area. For the first module, the core function is to extract the ground points from LIDAR data. To this end a road boundary detection is performed based on histogram analysis, then a plane estimation using RANSAC, and a ground point extraction according to the point-to-plane distance. In the second module, an image representation of illumination-invariant features is computed simultaneously. Ground points are projected to image plane and then used to compute a road probability map using a Gaussian model. The combination of these modalities improves the robustness of the whole system and reduces the overall computational time, since the first two modules can be run in parallel. Quantitative experiments carried on the public KITTI dataset enhanced by road annotations confirmed the effectiveness of the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
GPS precise positioning with pseudorange evaluation using 3-dimensional maps Vehicle safety evaluation based on driver drowsiness and distracted and impaired driving performance using evidence theory Concept-aware ensemble system for pedestrian detection Pose detection in truck and trailer combinations for advanced driver assistance systems Environment perception for inner-city driver assistance and highly-automated driving
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1