非翻译区外显子的非量子化最小自由能

K. Knapp, A. Rahaman, Y.-P.P. Chen
{"title":"非翻译区外显子的非量子化最小自由能","authors":"K. Knapp, A. Rahaman, Y.-P.P. Chen","doi":"10.1109/BIBMW.2007.4425397","DOIUrl":null,"url":null,"abstract":"In an attempt to improve automated gene prediction in the untranslated region of a gene, we completed an in-depth analysis of the minimum free energy for 8,689 sub-genetic DNA sequences. We expanded Zhang's classification model and classified each sub-genetic sequence into one of 27 possible motifs. We calculated the minimum free energy for each motif to explore statistical features that correlate to biologically relevant sub-genetic sequences. If biologically relevant sub-genetic sequences fall into distinct free energy quanta it may be possible to characterize a motif based on its minimum free energy. Proper characterization of motifs can lead to greater understanding in automated genefinding, gene variability and the role DNA structure plays in gene network regulation. Our analysis determined: (1) the average free energy value for exons, introns and other biologically relevant sub-genetic sequences, (2) that these subsequences do not exist in distinct energy quanta, (3) that introns exist however in a tightly coupled average minimum free energy quantum compared to all other biologically relevant sub-genetic sequence types, (4) that single exon genes demonstrate a higher stability than exons which span the entire coding sequence as part of a multi-exon gene and (5) that all motif types contain a free energy global minimum at approximately nucleotide position 1,000 before reaching a plateau. These results should be relevant to the biochemist and bioinformatician seeking to understand the relationship between sub-genetic sequences and the information behind them.","PeriodicalId":260286,"journal":{"name":"2007 IEEE International Conference on Bioinformatics and Biomedicine Workshops","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Non-quantized minimum free energy in untranslated region exons\",\"authors\":\"K. Knapp, A. Rahaman, Y.-P.P. Chen\",\"doi\":\"10.1109/BIBMW.2007.4425397\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In an attempt to improve automated gene prediction in the untranslated region of a gene, we completed an in-depth analysis of the minimum free energy for 8,689 sub-genetic DNA sequences. We expanded Zhang's classification model and classified each sub-genetic sequence into one of 27 possible motifs. We calculated the minimum free energy for each motif to explore statistical features that correlate to biologically relevant sub-genetic sequences. If biologically relevant sub-genetic sequences fall into distinct free energy quanta it may be possible to characterize a motif based on its minimum free energy. Proper characterization of motifs can lead to greater understanding in automated genefinding, gene variability and the role DNA structure plays in gene network regulation. Our analysis determined: (1) the average free energy value for exons, introns and other biologically relevant sub-genetic sequences, (2) that these subsequences do not exist in distinct energy quanta, (3) that introns exist however in a tightly coupled average minimum free energy quantum compared to all other biologically relevant sub-genetic sequence types, (4) that single exon genes demonstrate a higher stability than exons which span the entire coding sequence as part of a multi-exon gene and (5) that all motif types contain a free energy global minimum at approximately nucleotide position 1,000 before reaching a plateau. These results should be relevant to the biochemist and bioinformatician seeking to understand the relationship between sub-genetic sequences and the information behind them.\",\"PeriodicalId\":260286,\"journal\":{\"name\":\"2007 IEEE International Conference on Bioinformatics and Biomedicine Workshops\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE International Conference on Bioinformatics and Biomedicine Workshops\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIBMW.2007.4425397\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE International Conference on Bioinformatics and Biomedicine Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBMW.2007.4425397","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

为了提高基因非翻译区域的自动基因预测,我们完成了对8,689个亚遗传DNA序列的最小自由能的深入分析。我们扩展了Zhang的分类模型,并将每个亚基因序列分类为27个可能的基序之一。我们计算了每个基序的最小自由能,以探索与生物学相关的亚基因序列相关的统计特征。如果生物学上相关的亚基因序列落入不同的自由能量子,则有可能根据其最小自由能来表征基序。正确描述基序可以更好地理解自动基因发现、基因变异和DNA结构在基因网络调控中的作用。我们的分析确定:(1)外显子、内含子和其他与生物学相关的亚遗传序列的平均自由能值;(2)这些子序列不存在于不同的能量量子中;(3)与所有其他与生物学相关的亚遗传序列类型相比,内含子存在于紧密耦合的平均最小自由能量子中;(4)单外显子基因比跨整个编码序列作为多外显子基因的一部分的外显子表现出更高的稳定性;(5)所有基序类型在达到平台之前在大约核苷酸位置1000处包含自由能全局最小值。这些结果应该与生物化学家和生物信息学家寻求理解亚基因序列及其背后信息之间的关系有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Non-quantized minimum free energy in untranslated region exons
In an attempt to improve automated gene prediction in the untranslated region of a gene, we completed an in-depth analysis of the minimum free energy for 8,689 sub-genetic DNA sequences. We expanded Zhang's classification model and classified each sub-genetic sequence into one of 27 possible motifs. We calculated the minimum free energy for each motif to explore statistical features that correlate to biologically relevant sub-genetic sequences. If biologically relevant sub-genetic sequences fall into distinct free energy quanta it may be possible to characterize a motif based on its minimum free energy. Proper characterization of motifs can lead to greater understanding in automated genefinding, gene variability and the role DNA structure plays in gene network regulation. Our analysis determined: (1) the average free energy value for exons, introns and other biologically relevant sub-genetic sequences, (2) that these subsequences do not exist in distinct energy quanta, (3) that introns exist however in a tightly coupled average minimum free energy quantum compared to all other biologically relevant sub-genetic sequence types, (4) that single exon genes demonstrate a higher stability than exons which span the entire coding sequence as part of a multi-exon gene and (5) that all motif types contain a free energy global minimum at approximately nucleotide position 1,000 before reaching a plateau. These results should be relevant to the biochemist and bioinformatician seeking to understand the relationship between sub-genetic sequences and the information behind them.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
V-Lab-Protein: Virtual Collaborative Lab for protein sequence analysis Using fuzzy memberships to core patterns to interpret connectedness in gene expression clusters Rapid computation of large numbers of LOD scores in linkage analysis through polynomial expression of genetic likelihoods Flagellar proteins prediction after sequence-structure alignments of coronin and Arp2/3 complex in Leishmania spp. Structural characterization of RNA-binding sites of proteins: Preliminary results
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1