{"title":"基于衬底触发技术的CMOS专用集成电路电源轨ESD钳位电路设计","authors":"M. Ker, Tung-Yang Chen, Chung-Yu Wu","doi":"10.1109/ASIC.1997.617023","DOIUrl":null,"url":null,"abstract":"Four new device structures for power-rail ESD clamp circuits by using the substrate-triggering technique are investigated in submicron CMOS technology to improve ESD level of the protection device within a smaller silicon area. Experimental results in a 0.6-/spl mu/m CMOS process have verified that the ESD clamp circuit with the double-BJT structure can provide 200% higher ESD robustness in per unit layout area as comparing to the previous design with the NMOS device.","PeriodicalId":300310,"journal":{"name":"Proceedings. Tenth Annual IEEE International ASIC Conference and Exhibit (Cat. No.97TH8334)","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Design of cost-efficient ESD clamp circuits for the power rails of CMOS ASIC's with substrate-triggering technique\",\"authors\":\"M. Ker, Tung-Yang Chen, Chung-Yu Wu\",\"doi\":\"10.1109/ASIC.1997.617023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Four new device structures for power-rail ESD clamp circuits by using the substrate-triggering technique are investigated in submicron CMOS technology to improve ESD level of the protection device within a smaller silicon area. Experimental results in a 0.6-/spl mu/m CMOS process have verified that the ESD clamp circuit with the double-BJT structure can provide 200% higher ESD robustness in per unit layout area as comparing to the previous design with the NMOS device.\",\"PeriodicalId\":300310,\"journal\":{\"name\":\"Proceedings. Tenth Annual IEEE International ASIC Conference and Exhibit (Cat. No.97TH8334)\",\"volume\":\"58 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1997-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. Tenth Annual IEEE International ASIC Conference and Exhibit (Cat. No.97TH8334)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASIC.1997.617023\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. Tenth Annual IEEE International ASIC Conference and Exhibit (Cat. No.97TH8334)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASIC.1997.617023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Design of cost-efficient ESD clamp circuits for the power rails of CMOS ASIC's with substrate-triggering technique
Four new device structures for power-rail ESD clamp circuits by using the substrate-triggering technique are investigated in submicron CMOS technology to improve ESD level of the protection device within a smaller silicon area. Experimental results in a 0.6-/spl mu/m CMOS process have verified that the ESD clamp circuit with the double-BJT structure can provide 200% higher ESD robustness in per unit layout area as comparing to the previous design with the NMOS device.