展望云应用管理的分布式规划

F. Zaker, Marin Litoiu, Mark Shtern
{"title":"展望云应用管理的分布式规划","authors":"F. Zaker, Marin Litoiu, Mark Shtern","doi":"10.23919/CNSM46954.2019.9012693","DOIUrl":null,"url":null,"abstract":"In this paper, we propose and implement a distributed autonomic manager to maintain service level agreements (SLA) for each application’ scenario. The proposed autonomic manager seeks to support SLAs by configuring bandwidth ratios for each application scenario using overlay network before provisioning more computing resources. The most important aspect of the proposed autonomic manager is scalability which allows us to deal with geographically distributed cloud-based applications and large volume of computation. This can be useful in look ahead optimization and when using complex models, such as machine learning. Through experiments on Amazon AWS cloud, we demonstrate the elasticity of the autonomic manager.","PeriodicalId":273818,"journal":{"name":"2019 15th International Conference on Network and Service Management (CNSM)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Look Ahead Distributed Planning For Application Management In Cloud\",\"authors\":\"F. Zaker, Marin Litoiu, Mark Shtern\",\"doi\":\"10.23919/CNSM46954.2019.9012693\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose and implement a distributed autonomic manager to maintain service level agreements (SLA) for each application’ scenario. The proposed autonomic manager seeks to support SLAs by configuring bandwidth ratios for each application scenario using overlay network before provisioning more computing resources. The most important aspect of the proposed autonomic manager is scalability which allows us to deal with geographically distributed cloud-based applications and large volume of computation. This can be useful in look ahead optimization and when using complex models, such as machine learning. Through experiments on Amazon AWS cloud, we demonstrate the elasticity of the autonomic manager.\",\"PeriodicalId\":273818,\"journal\":{\"name\":\"2019 15th International Conference on Network and Service Management (CNSM)\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 15th International Conference on Network and Service Management (CNSM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/CNSM46954.2019.9012693\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 15th International Conference on Network and Service Management (CNSM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/CNSM46954.2019.9012693","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在本文中,我们提出并实现了一个分布式自治管理器,用于维护每个应用程序场景的服务水平协议(SLA)。提议的自治管理器寻求通过在提供更多计算资源之前使用覆盖网络为每个应用程序场景配置带宽比率来支持sla。提出的自治管理器最重要的方面是可伸缩性,它允许我们处理地理上分布式的基于云的应用程序和大量的计算。这在前瞻性优化和使用复杂模型(如机器学习)时非常有用。通过在Amazon AWS云上的实验,证明了自治管理器的弹性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Look Ahead Distributed Planning For Application Management In Cloud
In this paper, we propose and implement a distributed autonomic manager to maintain service level agreements (SLA) for each application’ scenario. The proposed autonomic manager seeks to support SLAs by configuring bandwidth ratios for each application scenario using overlay network before provisioning more computing resources. The most important aspect of the proposed autonomic manager is scalability which allows us to deal with geographically distributed cloud-based applications and large volume of computation. This can be useful in look ahead optimization and when using complex models, such as machine learning. Through experiments on Amazon AWS cloud, we demonstrate the elasticity of the autonomic manager.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Flow-based Throughput Prediction using Deep Learning and Real-World Network Traffic Learning From Evolving Network Data for Dependable Botnet Detection Exploring NAT Detection and Host Identification Using Machine Learning Lumped Markovian Estimation for Wi-Fi Channel Utilization Prediction An Access Control Implementation Targeting Resource-constrained Environments
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1