Rushabh Musthyala, Rudrajit Kargupta, Hritish Jain, D. Chakraborty
{"title":"注:ReGNL:使用夜灯快速预测破坏性事件期间的GDP","authors":"Rushabh Musthyala, Rudrajit Kargupta, Hritish Jain, D. Chakraborty","doi":"10.1145/3530190.3534849","DOIUrl":null,"url":null,"abstract":"Policymakers often make decisions based on GDP, unemployment rate, industrial output, etc. The primary methods to obtain or estimate such information are resource-intensive. In order to make timely and well-informed decisions, it is imperative to come up with proxies for these parameters, which can be sampled quickly and efficiently, especially during disruptive events like the COVID-19 pandemic. We explore the use of remotely sensed data for this task. The data has become cheaper to collect than surveys and can be available in real-time. In this work, we present Regional GDP-NightLight (ReGNL), a neural network trained to predict GDP given the nightlights data and geographical coordinates. Taking the case of 50 US states, we find that ReGNL is disruption-agnostic and can predict the GDP for both normal years (2019) and years with a disruptive event (2020). ReGNL outperforms time-series ARIMA methods for prediction, even during the pandemic.","PeriodicalId":268672,"journal":{"name":"Proceedings of the 5th ACM SIGCAS/SIGCHI Conference on Computing and Sustainable Societies","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Note: ReGNL: Rapid Prediction of GDP during Disruptive Events using Nightlights\",\"authors\":\"Rushabh Musthyala, Rudrajit Kargupta, Hritish Jain, D. Chakraborty\",\"doi\":\"10.1145/3530190.3534849\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Policymakers often make decisions based on GDP, unemployment rate, industrial output, etc. The primary methods to obtain or estimate such information are resource-intensive. In order to make timely and well-informed decisions, it is imperative to come up with proxies for these parameters, which can be sampled quickly and efficiently, especially during disruptive events like the COVID-19 pandemic. We explore the use of remotely sensed data for this task. The data has become cheaper to collect than surveys and can be available in real-time. In this work, we present Regional GDP-NightLight (ReGNL), a neural network trained to predict GDP given the nightlights data and geographical coordinates. Taking the case of 50 US states, we find that ReGNL is disruption-agnostic and can predict the GDP for both normal years (2019) and years with a disruptive event (2020). ReGNL outperforms time-series ARIMA methods for prediction, even during the pandemic.\",\"PeriodicalId\":268672,\"journal\":{\"name\":\"Proceedings of the 5th ACM SIGCAS/SIGCHI Conference on Computing and Sustainable Societies\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 5th ACM SIGCAS/SIGCHI Conference on Computing and Sustainable Societies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3530190.3534849\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 5th ACM SIGCAS/SIGCHI Conference on Computing and Sustainable Societies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3530190.3534849","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Note: ReGNL: Rapid Prediction of GDP during Disruptive Events using Nightlights
Policymakers often make decisions based on GDP, unemployment rate, industrial output, etc. The primary methods to obtain or estimate such information are resource-intensive. In order to make timely and well-informed decisions, it is imperative to come up with proxies for these parameters, which can be sampled quickly and efficiently, especially during disruptive events like the COVID-19 pandemic. We explore the use of remotely sensed data for this task. The data has become cheaper to collect than surveys and can be available in real-time. In this work, we present Regional GDP-NightLight (ReGNL), a neural network trained to predict GDP given the nightlights data and geographical coordinates. Taking the case of 50 US states, we find that ReGNL is disruption-agnostic and can predict the GDP for both normal years (2019) and years with a disruptive event (2020). ReGNL outperforms time-series ARIMA methods for prediction, even during the pandemic.