非常规井技术提高成熟油田油气采收率:布朗油田案例研究

Khalid Elwegaa, O. Kolawole, Saleh Ahmed, O. Tomomewo
{"title":"非常规井技术提高成熟油田油气采收率:布朗油田案例研究","authors":"Khalid Elwegaa, O. Kolawole, Saleh Ahmed, O. Tomomewo","doi":"10.2118/211881-ms","DOIUrl":null,"url":null,"abstract":"\n Hydrocarbon recovery from conventional reservoirs is currently at a declining rate, thus, the petroleum industry needs to find ways to economically produce hydrocarbon from mature and marginal oilfields in conventional reservoirs. Non-conventional well technology can enable the oil industry to do so. This study investigated how a novel non-conventional well technology coupled with a geomechanical approach can potentially improve hydrocarbon recovery from mature fields. Here, we utilized data from Brown field XX located in North Africa, and it is composed of distinct geological formations. One of the formations, \"Upper Gir,\" is an ideal candidate for the application of the non-conventional well technology. We used a reservoir simulator (SURE) to create a dynamic model by incorporating geomechanical tools from a static model previously built using Petrel software. SURE was used to model five simulation scenarios, with each scenario featuring a different well type. The scenarios simulated are the base case, do-nothing, vertical wells, horizontal wells, and multi-lateral wells. The model developed in this study forecasted 25 years of oil production for each simulation scenario and analyzed the results. The results of our numerical simulation study revealed that for 25 years, the multilateral wells produced +0.9% and +0.5% more hydrocarbon than the conventional wells and the horizontal wells, respectively. We also observed a reduction in the average water-cut from 25% to 20% (achieved in the conventional-well scenario) and from 23% to 20% (achieved in the horizontal-well scenario). Our proposed non-conventional well technology has shown promising potentials to improve hydrocarbon recovery, stabilize reservoir pressure, economic returns, and eliminate the risk of water conning in mature fields.","PeriodicalId":407915,"journal":{"name":"Day 2 Wed, October 19, 2022","volume":"65 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Non-Conventional Well Technology Approach to Improve Hydrocarbon Recovery from a Mature Field: Brown Field Case Study\",\"authors\":\"Khalid Elwegaa, O. Kolawole, Saleh Ahmed, O. Tomomewo\",\"doi\":\"10.2118/211881-ms\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Hydrocarbon recovery from conventional reservoirs is currently at a declining rate, thus, the petroleum industry needs to find ways to economically produce hydrocarbon from mature and marginal oilfields in conventional reservoirs. Non-conventional well technology can enable the oil industry to do so. This study investigated how a novel non-conventional well technology coupled with a geomechanical approach can potentially improve hydrocarbon recovery from mature fields. Here, we utilized data from Brown field XX located in North Africa, and it is composed of distinct geological formations. One of the formations, \\\"Upper Gir,\\\" is an ideal candidate for the application of the non-conventional well technology. We used a reservoir simulator (SURE) to create a dynamic model by incorporating geomechanical tools from a static model previously built using Petrel software. SURE was used to model five simulation scenarios, with each scenario featuring a different well type. The scenarios simulated are the base case, do-nothing, vertical wells, horizontal wells, and multi-lateral wells. The model developed in this study forecasted 25 years of oil production for each simulation scenario and analyzed the results. The results of our numerical simulation study revealed that for 25 years, the multilateral wells produced +0.9% and +0.5% more hydrocarbon than the conventional wells and the horizontal wells, respectively. We also observed a reduction in the average water-cut from 25% to 20% (achieved in the conventional-well scenario) and from 23% to 20% (achieved in the horizontal-well scenario). Our proposed non-conventional well technology has shown promising potentials to improve hydrocarbon recovery, stabilize reservoir pressure, economic returns, and eliminate the risk of water conning in mature fields.\",\"PeriodicalId\":407915,\"journal\":{\"name\":\"Day 2 Wed, October 19, 2022\",\"volume\":\"65 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 2 Wed, October 19, 2022\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2118/211881-ms\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 2 Wed, October 19, 2022","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/211881-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

常规油藏的油气采收率目前呈下降趋势,因此,石油工业需要寻找从常规油藏的成熟和边缘油田中经济地开采油气的方法。非常规井技术可以使石油行业实现这一目标。该研究探讨了一种新的非常规井技术与地质力学方法相结合,如何潜在地提高成熟油田的油气采收率。在这里,我们利用了位于北非的Brown field XX的数据,它由不同的地质构造组成。其中一层“Upper Gir”是应用非常规井技术的理想选择。我们使用油藏模拟器(SURE),结合地质力学工具,从之前使用Petrel软件建立的静态模型中创建动态模型。使用SURE对5种模拟场景进行建模,每种场景都有不同的井类型。模拟的场景包括基本情况、无操作、直井、水平井和多分支井。本研究开发的模型预测了每种模拟情景下25年的石油产量,并对结果进行了分析。数值模拟研究结果表明,在25年的时间里,分支井的油气产量分别比常规井和水平井高出0.9%和0.5%。我们还观察到,平均含水率从25%降低到20%(在常规井方案中实现),从23%降低到20%(在水平井方案中实现)。我们提出的非常规井技术在提高油气采收率、稳定油藏压力、提高经济效益和消除成熟油田水窜风险方面显示出良好的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Non-Conventional Well Technology Approach to Improve Hydrocarbon Recovery from a Mature Field: Brown Field Case Study
Hydrocarbon recovery from conventional reservoirs is currently at a declining rate, thus, the petroleum industry needs to find ways to economically produce hydrocarbon from mature and marginal oilfields in conventional reservoirs. Non-conventional well technology can enable the oil industry to do so. This study investigated how a novel non-conventional well technology coupled with a geomechanical approach can potentially improve hydrocarbon recovery from mature fields. Here, we utilized data from Brown field XX located in North Africa, and it is composed of distinct geological formations. One of the formations, "Upper Gir," is an ideal candidate for the application of the non-conventional well technology. We used a reservoir simulator (SURE) to create a dynamic model by incorporating geomechanical tools from a static model previously built using Petrel software. SURE was used to model five simulation scenarios, with each scenario featuring a different well type. The scenarios simulated are the base case, do-nothing, vertical wells, horizontal wells, and multi-lateral wells. The model developed in this study forecasted 25 years of oil production for each simulation scenario and analyzed the results. The results of our numerical simulation study revealed that for 25 years, the multilateral wells produced +0.9% and +0.5% more hydrocarbon than the conventional wells and the horizontal wells, respectively. We also observed a reduction in the average water-cut from 25% to 20% (achieved in the conventional-well scenario) and from 23% to 20% (achieved in the horizontal-well scenario). Our proposed non-conventional well technology has shown promising potentials to improve hydrocarbon recovery, stabilize reservoir pressure, economic returns, and eliminate the risk of water conning in mature fields.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Better Perforations Help Solve the Gummy Bears Problem Scaling Equations for Benchtop Laboratory Simulator of Wellbore Hydraulics Spectral Acoustic Logging to Guide the Successful Remediation of Gas Well. Case Study Cement Sheath Fatigue Failure Prediction by Support Vector Machine Based Model The Impact of Formation and Fracture Properties Alterations on the Productivity of the Multi-Stage Fractured Marcellus Shale Horizontal Wells
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1