在卷积神经网络中嵌入重力搜索算法用于OCR应用

L. Fedorovici, R. Precup, Florin Dragan, Radu-Codrut David, C. Purcaru
{"title":"在卷积神经网络中嵌入重力搜索算法用于OCR应用","authors":"L. Fedorovici, R. Precup, Florin Dragan, Radu-Codrut David, C. Purcaru","doi":"10.1109/SACI.2012.6249989","DOIUrl":null,"url":null,"abstract":"This paper presents aspects concerning embedding Gravitational Search Algorithms (GSAs) in Convolutional Neural Networks (CNNs) for Optical Character Recognition (OCR) systems. The GSAs are used in combination with the Back Propagation (BP) algorithm as optimization algorithms in the training process of a specific CNN architecture for OCR applications. The new algorithm consists of applying first the GSA and next the BP in order to ensure performance improvements by avoiding the algorithms' traps in local minima. A performance analysis for a given benchmark application shows the advantages of our algorithm over the classical BP algorithm for a six layer CNN dedicated to OCR applications.","PeriodicalId":293436,"journal":{"name":"2012 7th IEEE International Symposium on Applied Computational Intelligence and Informatics (SACI)","volume":"222 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"Embedding Gravitational Search Algorithms in Convolutional Neural Networks for OCR applications\",\"authors\":\"L. Fedorovici, R. Precup, Florin Dragan, Radu-Codrut David, C. Purcaru\",\"doi\":\"10.1109/SACI.2012.6249989\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents aspects concerning embedding Gravitational Search Algorithms (GSAs) in Convolutional Neural Networks (CNNs) for Optical Character Recognition (OCR) systems. The GSAs are used in combination with the Back Propagation (BP) algorithm as optimization algorithms in the training process of a specific CNN architecture for OCR applications. The new algorithm consists of applying first the GSA and next the BP in order to ensure performance improvements by avoiding the algorithms' traps in local minima. A performance analysis for a given benchmark application shows the advantages of our algorithm over the classical BP algorithm for a six layer CNN dedicated to OCR applications.\",\"PeriodicalId\":293436,\"journal\":{\"name\":\"2012 7th IEEE International Symposium on Applied Computational Intelligence and Informatics (SACI)\",\"volume\":\"222 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 7th IEEE International Symposium on Applied Computational Intelligence and Informatics (SACI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SACI.2012.6249989\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 7th IEEE International Symposium on Applied Computational Intelligence and Informatics (SACI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SACI.2012.6249989","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

摘要

本文介绍了用于光学字符识别(OCR)系统的卷积神经网络(cnn)中嵌入引力搜索算法(GSAs)的几个方面。gsa与BP (Back Propagation)算法结合使用,作为OCR应用特定CNN架构训练过程中的优化算法。新算法首先应用GSA,然后应用BP,以避免算法的局部最小值陷阱,从而保证性能的提高。对给定基准应用程序的性能分析表明,对于专用于OCR应用的六层CNN,我们的算法优于经典BP算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Embedding Gravitational Search Algorithms in Convolutional Neural Networks for OCR applications
This paper presents aspects concerning embedding Gravitational Search Algorithms (GSAs) in Convolutional Neural Networks (CNNs) for Optical Character Recognition (OCR) systems. The GSAs are used in combination with the Back Propagation (BP) algorithm as optimization algorithms in the training process of a specific CNN architecture for OCR applications. The new algorithm consists of applying first the GSA and next the BP in order to ensure performance improvements by avoiding the algorithms' traps in local minima. A performance analysis for a given benchmark application shows the advantages of our algorithm over the classical BP algorithm for a six layer CNN dedicated to OCR applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Software architecture for semantically enhanced composition of geoservices in cadastral systems Fuzzy Rule Interpolation Developer Toolbox Library Long life oriented smart control of heating body A model of translation management systems for multilingual documents Using the Gram-Charlier expansion in power systems reliability
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1