{"title":"基于迭代最近点算法的道路车道匹配地图相对定位","authors":"A. Evlampev, I. Shapovalov, S. Gafurov","doi":"10.1145/3430199.3430229","DOIUrl":null,"url":null,"abstract":"Accurate and reliable localization is necessary for vehicle autonomous driving. Existing localization systems based on the GNSS cannot always provide lane-level accuracy. This paper proposes the method that improves vehicle localization by using road lanes recognized from a camera and a digital map. Iterative Closest Point (ICP) matching is performed for generated point clouds to minimize lateral error. The neural network is used for lane detection, detections are post-processed and fitted to the polynomial. Changes that allowed improving ICP matching are described. Finally, we perform an experiment with GPS RTK signal as ground truth and demonstrate that the proposed method has a position error of less than 0.5 m for vehicle localization.","PeriodicalId":371055,"journal":{"name":"Proceedings of the 2020 3rd International Conference on Artificial Intelligence and Pattern Recognition","volume":"65 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Map relative localization based on road lane matching with Iterative Closest Point algorithm\",\"authors\":\"A. Evlampev, I. Shapovalov, S. Gafurov\",\"doi\":\"10.1145/3430199.3430229\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Accurate and reliable localization is necessary for vehicle autonomous driving. Existing localization systems based on the GNSS cannot always provide lane-level accuracy. This paper proposes the method that improves vehicle localization by using road lanes recognized from a camera and a digital map. Iterative Closest Point (ICP) matching is performed for generated point clouds to minimize lateral error. The neural network is used for lane detection, detections are post-processed and fitted to the polynomial. Changes that allowed improving ICP matching are described. Finally, we perform an experiment with GPS RTK signal as ground truth and demonstrate that the proposed method has a position error of less than 0.5 m for vehicle localization.\",\"PeriodicalId\":371055,\"journal\":{\"name\":\"Proceedings of the 2020 3rd International Conference on Artificial Intelligence and Pattern Recognition\",\"volume\":\"65 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2020 3rd International Conference on Artificial Intelligence and Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3430199.3430229\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2020 3rd International Conference on Artificial Intelligence and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3430199.3430229","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Map relative localization based on road lane matching with Iterative Closest Point algorithm
Accurate and reliable localization is necessary for vehicle autonomous driving. Existing localization systems based on the GNSS cannot always provide lane-level accuracy. This paper proposes the method that improves vehicle localization by using road lanes recognized from a camera and a digital map. Iterative Closest Point (ICP) matching is performed for generated point clouds to minimize lateral error. The neural network is used for lane detection, detections are post-processed and fitted to the polynomial. Changes that allowed improving ICP matching are described. Finally, we perform an experiment with GPS RTK signal as ground truth and demonstrate that the proposed method has a position error of less than 0.5 m for vehicle localization.