基于太赫兹的精准农业联合通信与传感:6G用例

Muhammad Usman, Shuja Ansari, Ahmad Taha, A. Zahid, Q. Abbasi, M. Imran
{"title":"基于太赫兹的精准农业联合通信与传感:6G用例","authors":"Muhammad Usman, Shuja Ansari, Ahmad Taha, A. Zahid, Q. Abbasi, M. Imran","doi":"10.3389/frcmn.2022.836506","DOIUrl":null,"url":null,"abstract":"By 2050, experts estimate that the agricultural produce must increase by 60%–70% to meet the needs of the ever increasing population of the world. To this aim, the concept of precision agriculture or smart farming has recently been coined. The idea of precision agriculture is well represented as a smart management system, having the ability to monitor, observe, sense, measure and control the health and water contents in plants at nano-scale and crops at macro-scale. The goal is to maximise the production while preserving the vital resources. The combination of terahertz (THz) based sensing technology to estimate plant health at a cellular level, and wireless sensor networks deployed within crops to monitor different variables while making intelligent decisions is far reaching. The integration and operation of such a macro-nano-sensor system requires a sustainable communication infrastructure that considers the demands of remote and agile agricultural environments. In this paper, an integrated sensing and communication system for plant health monitoring that utilises THz signals, is presented as a 6G use case. The joint architecture is outlined and various challenges including energy harvesting, practical implementation among others, followed by recommendations for future research are presented.","PeriodicalId":106247,"journal":{"name":"Frontiers in Communications and Networks","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Terahertz-Based Joint Communication and Sensing for Precision Agriculture: A 6G Use-Case\",\"authors\":\"Muhammad Usman, Shuja Ansari, Ahmad Taha, A. Zahid, Q. Abbasi, M. Imran\",\"doi\":\"10.3389/frcmn.2022.836506\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"By 2050, experts estimate that the agricultural produce must increase by 60%–70% to meet the needs of the ever increasing population of the world. To this aim, the concept of precision agriculture or smart farming has recently been coined. The idea of precision agriculture is well represented as a smart management system, having the ability to monitor, observe, sense, measure and control the health and water contents in plants at nano-scale and crops at macro-scale. The goal is to maximise the production while preserving the vital resources. The combination of terahertz (THz) based sensing technology to estimate plant health at a cellular level, and wireless sensor networks deployed within crops to monitor different variables while making intelligent decisions is far reaching. The integration and operation of such a macro-nano-sensor system requires a sustainable communication infrastructure that considers the demands of remote and agile agricultural environments. In this paper, an integrated sensing and communication system for plant health monitoring that utilises THz signals, is presented as a 6G use case. The joint architecture is outlined and various challenges including energy harvesting, practical implementation among others, followed by recommendations for future research are presented.\",\"PeriodicalId\":106247,\"journal\":{\"name\":\"Frontiers in Communications and Networks\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Communications and Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/frcmn.2022.836506\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Communications and Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/frcmn.2022.836506","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

专家估计,到2050年,农业生产必须增加60%-70%,才能满足不断增长的世界人口的需求。为此,精准农业或智能农业的概念最近被创造出来。精准农业的概念是一种智能管理系统,能够在纳米尺度上监测、观察、感知、测量和控制植物的健康和水分含量,在宏观尺度上控制作物。目标是在保护重要资源的同时最大限度地提高产量。将基于太赫兹(THz)的传感技术结合起来,在细胞水平上估计植物健康状况,并在作物内部部署无线传感器网络,在做出智能决策的同时监测不同的变量,这一组合意义深远。这样一个宏观纳米传感器系统的集成和运行需要一个可持续的通信基础设施,考虑到远程和敏捷农业环境的需求。本文提出了一种利用太赫兹信号的植物健康监测综合传感和通信系统,作为6G用例。概述了联合架构和各种挑战,包括能量收集,实际实施等,随后提出了对未来研究的建议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Terahertz-Based Joint Communication and Sensing for Precision Agriculture: A 6G Use-Case
By 2050, experts estimate that the agricultural produce must increase by 60%–70% to meet the needs of the ever increasing population of the world. To this aim, the concept of precision agriculture or smart farming has recently been coined. The idea of precision agriculture is well represented as a smart management system, having the ability to monitor, observe, sense, measure and control the health and water contents in plants at nano-scale and crops at macro-scale. The goal is to maximise the production while preserving the vital resources. The combination of terahertz (THz) based sensing technology to estimate plant health at a cellular level, and wireless sensor networks deployed within crops to monitor different variables while making intelligent decisions is far reaching. The integration and operation of such a macro-nano-sensor system requires a sustainable communication infrastructure that considers the demands of remote and agile agricultural environments. In this paper, an integrated sensing and communication system for plant health monitoring that utilises THz signals, is presented as a 6G use case. The joint architecture is outlined and various challenges including energy harvesting, practical implementation among others, followed by recommendations for future research are presented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.90
自引率
0.00%
发文量
0
期刊最新文献
Sailing into the future: technologies, challenges, and opportunities for maritime communication networks in the 6G era Efficient multiple unmanned aerial vehicle-assisted data collection strategy in power infrastructure construction Health of Things Melanoma Detection System—detection and segmentation of melanoma in dermoscopic images applied to edge computing using deep learning and fine-tuning models Cell signaling error control for reliable molecular communications Secure authentication in MIMO systems: exploring physical limits
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1