不均匀乳腺内肿瘤稀疏定位

M. Nikolić, J. Dinkić, N. Milosevic, B. Kolundžija
{"title":"不均匀乳腺内肿瘤稀疏定位","authors":"M. Nikolić, J. Dinkić, N. Milosevic, B. Kolundžija","doi":"10.1109/ICEAA.2015.7297277","DOIUrl":null,"url":null,"abstract":"We discuss the application of the sparse processing techniques in the differential breast-cancer imaging. We derive the sparse model by assuming that the parameters of the inhomogeneous breast model are known from the previous measurements. In the linear model, we use the numerically computed three-dimensional Green's functions. We investigate the role of the regularization parameter and the number of sensors on the solution accuracy.","PeriodicalId":277112,"journal":{"name":"2015 International Conference on Electromagnetics in Advanced Applications (ICEAA)","volume":"407 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Sparse localization of tumors inside an inhomogeneous breast\",\"authors\":\"M. Nikolić, J. Dinkić, N. Milosevic, B. Kolundžija\",\"doi\":\"10.1109/ICEAA.2015.7297277\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We discuss the application of the sparse processing techniques in the differential breast-cancer imaging. We derive the sparse model by assuming that the parameters of the inhomogeneous breast model are known from the previous measurements. In the linear model, we use the numerically computed three-dimensional Green's functions. We investigate the role of the regularization parameter and the number of sensors on the solution accuracy.\",\"PeriodicalId\":277112,\"journal\":{\"name\":\"2015 International Conference on Electromagnetics in Advanced Applications (ICEAA)\",\"volume\":\"407 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 International Conference on Electromagnetics in Advanced Applications (ICEAA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICEAA.2015.7297277\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Electromagnetics in Advanced Applications (ICEAA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEAA.2015.7297277","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

讨论稀疏处理技术在乳腺癌鉴别成像中的应用。我们通过假设非均匀乳房模型的参数是已知的从以前的测量推导稀疏模型。在线性模型中,我们使用数值计算的三维格林函数。研究了正则化参数和传感器个数对求解精度的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Sparse localization of tumors inside an inhomogeneous breast
We discuss the application of the sparse processing techniques in the differential breast-cancer imaging. We derive the sparse model by assuming that the parameters of the inhomogeneous breast model are known from the previous measurements. In the linear model, we use the numerically computed three-dimensional Green's functions. We investigate the role of the regularization parameter and the number of sensors on the solution accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Differential microstrip lines with wideband common-mode rejection based on chirped-EBGs Analysis of cyclostationary stochastic electromagnetic fields Uncertainty analysis of far field antenna factors using amplitude center modified equation Numerical results on the performance of gaseous plasma antennas Lightning protection of aircraft systems installed inside composite nose: Principal analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1