用于外骨骼控制的脑机接口左右运动分类的混合MI-SSSEP范式

Jaehyung Lee, Kabmun Cha, Hyungmin Kim, Junhyuk Choi, Choong Hyun Kim, S. Lee
{"title":"用于外骨骼控制的脑机接口左右运动分类的混合MI-SSSEP范式","authors":"Jaehyung Lee, Kabmun Cha, Hyungmin Kim, Junhyuk Choi, Choong Hyun Kim, S. Lee","doi":"10.1109/IWW-BCI.2019.8737319","DOIUrl":null,"url":null,"abstract":"The goal of this study was to compare decoding accuracy of left and right movement intention from electroencephalography (EEG) using three different types of paradigms: Motor Imagery (MI), Selective Attention (SA), and Hybrid task (HY)). Specifically, SA and HY are the Steady-State Somatosensory Evoked potential (SSSEP) paradigms which elicit brain responses to tactile stimulation. One subject participated in two sessions (Screening and Study session). In the screening session, resonance-like frequency of the subject was found at each hand while sitting on a chair. In the study session, the subject was asked to imagine either left of right hand open-close movement (MI task), to give selective attention to the vibrotactile stimulation (SA task), and to perform combined MI and SA task (HY) according to a randomly assigned directional cue. The accuracies of 3 paradigms were MI-left 65.8%, MI-right 69.2% (mean: 67.5%), SA-left 76.6%, SA-right 84.0% (mean: 80.3%) and HY-left 93.8%, HY-right 95.9% (mean: 94.9%). The method and results of the current study could be a basis for controlling the left and right movement direction of an exoskeleton robot using EEG.","PeriodicalId":345970,"journal":{"name":"2019 7th International Winter Conference on Brain-Computer Interface (BCI)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Hybrid MI-SSSEP Paradigm for classifying left and right movement toward BCI for exoskeleton control\",\"authors\":\"Jaehyung Lee, Kabmun Cha, Hyungmin Kim, Junhyuk Choi, Choong Hyun Kim, S. Lee\",\"doi\":\"10.1109/IWW-BCI.2019.8737319\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The goal of this study was to compare decoding accuracy of left and right movement intention from electroencephalography (EEG) using three different types of paradigms: Motor Imagery (MI), Selective Attention (SA), and Hybrid task (HY)). Specifically, SA and HY are the Steady-State Somatosensory Evoked potential (SSSEP) paradigms which elicit brain responses to tactile stimulation. One subject participated in two sessions (Screening and Study session). In the screening session, resonance-like frequency of the subject was found at each hand while sitting on a chair. In the study session, the subject was asked to imagine either left of right hand open-close movement (MI task), to give selective attention to the vibrotactile stimulation (SA task), and to perform combined MI and SA task (HY) according to a randomly assigned directional cue. The accuracies of 3 paradigms were MI-left 65.8%, MI-right 69.2% (mean: 67.5%), SA-left 76.6%, SA-right 84.0% (mean: 80.3%) and HY-left 93.8%, HY-right 95.9% (mean: 94.9%). The method and results of the current study could be a basis for controlling the left and right movement direction of an exoskeleton robot using EEG.\",\"PeriodicalId\":345970,\"journal\":{\"name\":\"2019 7th International Winter Conference on Brain-Computer Interface (BCI)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 7th International Winter Conference on Brain-Computer Interface (BCI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IWW-BCI.2019.8737319\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 7th International Winter Conference on Brain-Computer Interface (BCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWW-BCI.2019.8737319","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

本研究采用运动意象(MI)、选择性注意(SA)和混合任务(HY)三种不同的范式,比较左、右运动意向的脑电图解码准确率。具体来说,SA和HY是稳态体感诱发电位(SSSEP)范式,引起大脑对触觉刺激的反应。1名受试者参加了两个阶段(筛选阶段和学习阶段)。在筛选过程中,当受试者坐在椅子上时,在每只手上都发现了类似共振的频率。在研究阶段,受试者被要求想象左手或右手开合运动(MI任务),选择性地注意振动触觉刺激(SA任务),并根据随机分配的方向线索执行MI和SA联合任务(HY)。3种范式的准确率分别为mi -左65.8%、mi -右69.2%(平均67.5%)、sa -左76.6%、sa -右84.0%(平均80.3%)和hy -左93.8%、hy -右95.9%(平均94.9%)。本研究的方法和结果可为利用脑电图控制外骨骼机器人的左右运动方向提供依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Hybrid MI-SSSEP Paradigm for classifying left and right movement toward BCI for exoskeleton control
The goal of this study was to compare decoding accuracy of left and right movement intention from electroencephalography (EEG) using three different types of paradigms: Motor Imagery (MI), Selective Attention (SA), and Hybrid task (HY)). Specifically, SA and HY are the Steady-State Somatosensory Evoked potential (SSSEP) paradigms which elicit brain responses to tactile stimulation. One subject participated in two sessions (Screening and Study session). In the screening session, resonance-like frequency of the subject was found at each hand while sitting on a chair. In the study session, the subject was asked to imagine either left of right hand open-close movement (MI task), to give selective attention to the vibrotactile stimulation (SA task), and to perform combined MI and SA task (HY) according to a randomly assigned directional cue. The accuracies of 3 paradigms were MI-left 65.8%, MI-right 69.2% (mean: 67.5%), SA-left 76.6%, SA-right 84.0% (mean: 80.3%) and HY-left 93.8%, HY-right 95.9% (mean: 94.9%). The method and results of the current study could be a basis for controlling the left and right movement direction of an exoskeleton robot using EEG.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Biometrics Based on Single-Trial EEG The Effect of a Binaural Beat Combined with Autonomous Sensory Meridian Response Triggers on Brainwave Entrainment Estimation of speed and direction of arm movements from M1 activity using a nonlinear neural decoder A Hybrid MI-SSVEP based Brain Computer Interface for Potential Upper Limb Neurorehabilitation: A Pilot Study Recurrent convolutional neural network model based on temporal and spatial feature for motor imagery classification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1