Xianjun Shen, Yao Chen, Xingpeng Jiang, Xiaohua Hu, Tingting He, Jincai Yang
{"title":"异质网络随机行走预测疾病-微生物关联","authors":"Xianjun Shen, Yao Chen, Xingpeng Jiang, Xiaohua Hu, Tingting He, Jincai Yang","doi":"10.1109/BIBM.2016.7822619","DOIUrl":null,"url":null,"abstract":"The microbiota living in the human body plays a very important role in our health and disease, so the identification of microbes associated with diseases will contribute to improving medical care and to better understanding of microbe functions, interactions. However, the known associations between the diseases and microbes are very less. We proposed a new method for prioritization of candidate microbes to predict disease-microbe relationships that based on the random walking on the heterogeneous network. Here, we first constructed a heterogeneous network by connecting the disease network and microbe network using the disease-microbe relationship information, then extended the random walk to the heterogeneous network, finally we used leave-one-out cross-validation to evaluate the method and ranked the candidate disease-causing microbes. We used the algorithm to disclose some potential association between disease and microbe that cannot be found by microbe network or disease network alone. Furthermore, we studied three representative diseases, Type 2 diabetes, Asthma and Psoriasis, and presented the potential microbes associated with these diseases, respectively. We confirmed that the discovery of the associations will be a good clinical solution for disease mechanism understanding, diagnosis and therapy.","PeriodicalId":345384,"journal":{"name":"2016 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Predicting disease-microbe association by random walking on the heterogeneous network\",\"authors\":\"Xianjun Shen, Yao Chen, Xingpeng Jiang, Xiaohua Hu, Tingting He, Jincai Yang\",\"doi\":\"10.1109/BIBM.2016.7822619\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The microbiota living in the human body plays a very important role in our health and disease, so the identification of microbes associated with diseases will contribute to improving medical care and to better understanding of microbe functions, interactions. However, the known associations between the diseases and microbes are very less. We proposed a new method for prioritization of candidate microbes to predict disease-microbe relationships that based on the random walking on the heterogeneous network. Here, we first constructed a heterogeneous network by connecting the disease network and microbe network using the disease-microbe relationship information, then extended the random walk to the heterogeneous network, finally we used leave-one-out cross-validation to evaluate the method and ranked the candidate disease-causing microbes. We used the algorithm to disclose some potential association between disease and microbe that cannot be found by microbe network or disease network alone. Furthermore, we studied three representative diseases, Type 2 diabetes, Asthma and Psoriasis, and presented the potential microbes associated with these diseases, respectively. We confirmed that the discovery of the associations will be a good clinical solution for disease mechanism understanding, diagnosis and therapy.\",\"PeriodicalId\":345384,\"journal\":{\"name\":\"2016 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIBM.2016.7822619\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBM.2016.7822619","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Predicting disease-microbe association by random walking on the heterogeneous network
The microbiota living in the human body plays a very important role in our health and disease, so the identification of microbes associated with diseases will contribute to improving medical care and to better understanding of microbe functions, interactions. However, the known associations between the diseases and microbes are very less. We proposed a new method for prioritization of candidate microbes to predict disease-microbe relationships that based on the random walking on the heterogeneous network. Here, we first constructed a heterogeneous network by connecting the disease network and microbe network using the disease-microbe relationship information, then extended the random walk to the heterogeneous network, finally we used leave-one-out cross-validation to evaluate the method and ranked the candidate disease-causing microbes. We used the algorithm to disclose some potential association between disease and microbe that cannot be found by microbe network or disease network alone. Furthermore, we studied three representative diseases, Type 2 diabetes, Asthma and Psoriasis, and presented the potential microbes associated with these diseases, respectively. We confirmed that the discovery of the associations will be a good clinical solution for disease mechanism understanding, diagnosis and therapy.