无线传感器网络中距离估计的统计几何方法

Valerio Freschi, E. Lattanzi, A. Bogliolo
{"title":"无线传感器网络中距离估计的统计几何方法","authors":"Valerio Freschi, E. Lattanzi, A. Bogliolo","doi":"10.1109/ICCW.2013.6649192","DOIUrl":null,"url":null,"abstract":"Algorithmic approaches to the estimation of pairwise distances between the nodes of a wireless sensor network are highly attractive to provide information for routing and localization without requiring specific hardware to be added to cost/resource-constrained nodes. This paper exploits statistical geometry to derive robust estimators of the pairwise Euclidean distances from topological information typically available in any network. Extensive Monte Carlo experiments conducted on synthetic benchmarks demonstrate the improved quality of the proposed estimators with respect to the state of the art.","PeriodicalId":252497,"journal":{"name":"2013 IEEE International Conference on Communications Workshops (ICC)","volume":"16 4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A statistical geometry approach to distance estimation in wireless sensor networks\",\"authors\":\"Valerio Freschi, E. Lattanzi, A. Bogliolo\",\"doi\":\"10.1109/ICCW.2013.6649192\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Algorithmic approaches to the estimation of pairwise distances between the nodes of a wireless sensor network are highly attractive to provide information for routing and localization without requiring specific hardware to be added to cost/resource-constrained nodes. This paper exploits statistical geometry to derive robust estimators of the pairwise Euclidean distances from topological information typically available in any network. Extensive Monte Carlo experiments conducted on synthetic benchmarks demonstrate the improved quality of the proposed estimators with respect to the state of the art.\",\"PeriodicalId\":252497,\"journal\":{\"name\":\"2013 IEEE International Conference on Communications Workshops (ICC)\",\"volume\":\"16 4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE International Conference on Communications Workshops (ICC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCW.2013.6649192\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference on Communications Workshops (ICC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCW.2013.6649192","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

估计无线传感器网络节点之间的成对距离的算法方法非常有吸引力,可以提供路由和定位信息,而不需要在成本/资源受限的节点上添加特定的硬件。本文利用统计几何从任何网络中典型的拓扑信息推导出对欧几里得距离的鲁棒估计。在合成基准上进行的大量蒙特卡罗实验表明,所提出的估计器的质量相对于目前的水平有所提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A statistical geometry approach to distance estimation in wireless sensor networks
Algorithmic approaches to the estimation of pairwise distances between the nodes of a wireless sensor network are highly attractive to provide information for routing and localization without requiring specific hardware to be added to cost/resource-constrained nodes. This paper exploits statistical geometry to derive robust estimators of the pairwise Euclidean distances from topological information typically available in any network. Extensive Monte Carlo experiments conducted on synthetic benchmarks demonstrate the improved quality of the proposed estimators with respect to the state of the art.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Statistical analysis of secondary users throughput for OFDMA cognitive radio networks Target identification in foliage environment using selected bispectra and Extreme Learning Machine IEEE802.11af with partial subcarrier system for effective use of TV white spaces Microfluidic networks: design and test of a pure hydrodynamic switching function Cooperative multicast exploiting Physical layer Network Coding: A performance analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1