具有100%吞吐量的交叉点缓冲交换机的低复杂度调度算法

Yanming Shen, S. Panwar, H. J. Chao
{"title":"具有100%吞吐量的交叉点缓冲交换机的低复杂度调度算法","authors":"Yanming Shen, S. Panwar, H. J. Chao","doi":"10.1109/HSPR.2008.4734442","DOIUrl":null,"url":null,"abstract":"Crosspoint buffered switches are emerging as the focus of research in high-speed routers. They have simpler scheduling algorithms, and achieve better performance than a bufferless crossbar switch. Crosspoint buffered switches have a buffer at each crosspoint. A cell is first delivered to a crosspoint buffer, and then transferred to the output port. With a speedup of two, a crosspoint buffered switch has previously been proved to provide 100% throughput. In this paper, we propose a 100% throughput scheduling algorithm without speedup, called SQUID. With this design, each input/output keeps track of the previously served virtual output queues (VOQs)/crosspoint buffers. We prove that SQUID, with a time complexity of O(log N), can achieve 100% throughput without any speedup. Our simulation results also show a delay performance comparable to outputqueued switches. We also present a novel queuing model that models crosspoint buffered switches under uniform traffic.","PeriodicalId":130484,"journal":{"name":"2008 International Conference on High Performance Switching and Routing","volume":"84 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A low complexity scheduling algorithm for a crosspoint buffered switch with 100% throughput\",\"authors\":\"Yanming Shen, S. Panwar, H. J. Chao\",\"doi\":\"10.1109/HSPR.2008.4734442\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Crosspoint buffered switches are emerging as the focus of research in high-speed routers. They have simpler scheduling algorithms, and achieve better performance than a bufferless crossbar switch. Crosspoint buffered switches have a buffer at each crosspoint. A cell is first delivered to a crosspoint buffer, and then transferred to the output port. With a speedup of two, a crosspoint buffered switch has previously been proved to provide 100% throughput. In this paper, we propose a 100% throughput scheduling algorithm without speedup, called SQUID. With this design, each input/output keeps track of the previously served virtual output queues (VOQs)/crosspoint buffers. We prove that SQUID, with a time complexity of O(log N), can achieve 100% throughput without any speedup. Our simulation results also show a delay performance comparable to outputqueued switches. We also present a novel queuing model that models crosspoint buffered switches under uniform traffic.\",\"PeriodicalId\":130484,\"journal\":{\"name\":\"2008 International Conference on High Performance Switching and Routing\",\"volume\":\"84 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 International Conference on High Performance Switching and Routing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HSPR.2008.4734442\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 International Conference on High Performance Switching and Routing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HSPR.2008.4734442","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

交叉点缓冲交换机是高速路由器研究的热点。它们具有更简单的调度算法,并且比无缓冲的交叉开关实现更好的性能。交叉点缓冲开关在每个交叉点都有一个缓冲器。单元首先传送到交叉点缓冲区,然后传送到输出端口。通过两倍的加速,交叉点缓冲开关已经被证明可以提供100%的吞吐量。本文提出了一种无加速的100%吞吐量调度算法,称为SQUID。使用这种设计,每个输入/输出都会跟踪先前服务的虚拟输出队列(VOQs)/交叉点缓冲区。我们证明了时间复杂度为O(log N)的SQUID可以在没有任何加速的情况下实现100%的吞吐量。我们的仿真结果也显示了与输出队列交换机相当的延迟性能。我们还提出了一种新的排队模型来模拟均匀流量下的交叉点缓冲交换机。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A low complexity scheduling algorithm for a crosspoint buffered switch with 100% throughput
Crosspoint buffered switches are emerging as the focus of research in high-speed routers. They have simpler scheduling algorithms, and achieve better performance than a bufferless crossbar switch. Crosspoint buffered switches have a buffer at each crosspoint. A cell is first delivered to a crosspoint buffer, and then transferred to the output port. With a speedup of two, a crosspoint buffered switch has previously been proved to provide 100% throughput. In this paper, we propose a 100% throughput scheduling algorithm without speedup, called SQUID. With this design, each input/output keeps track of the previously served virtual output queues (VOQs)/crosspoint buffers. We prove that SQUID, with a time complexity of O(log N), can achieve 100% throughput without any speedup. Our simulation results also show a delay performance comparable to outputqueued switches. We also present a novel queuing model that models crosspoint buffered switches under uniform traffic.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Dynamic workload profiling and task allocation in packet processing systems A distributed and scalable MPLS architecture for next generation routers Distributed PC based routers: Bottleneck analysis and architecture proposal Efficient broadcasting in interface switching wireless networks Quick-Start and XCP on a network processor: Implementation issues and performance evaluation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1