{"title":"基于模型的暂态信号的MLANS神经网络分类","authors":"L. Perlovsky","doi":"10.1109/ICNN.1991.163357","DOIUrl":null,"url":null,"abstract":"A maximum likelihood artificial neural system (MLANS) neural network is proposed for transient signal recognition. The MLANS learning efficiency greatly exceeds that of other neural networks and is approaching the information-theoretical limit on performance of any neural network or algorithm. The MLANS operates on a two-dimensional representation of the signal in either the short-term spectral or the Wigner transform domain. The first layer of the network uses structured second-order neurons to estimate the signal model from training data. A second layer performs optimal multimodal Bayes classification. Learning efficiency approaching the information-theoretical limit is achieved in each layer of the MLANS.<<ETX>>","PeriodicalId":296300,"journal":{"name":"[1991 Proceedings] IEEE Conference on Neural Networks for Ocean Engineering","volume":"140 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1991-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Model based classification of transient signals using the MLANS neural network\",\"authors\":\"L. Perlovsky\",\"doi\":\"10.1109/ICNN.1991.163357\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A maximum likelihood artificial neural system (MLANS) neural network is proposed for transient signal recognition. The MLANS learning efficiency greatly exceeds that of other neural networks and is approaching the information-theoretical limit on performance of any neural network or algorithm. The MLANS operates on a two-dimensional representation of the signal in either the short-term spectral or the Wigner transform domain. The first layer of the network uses structured second-order neurons to estimate the signal model from training data. A second layer performs optimal multimodal Bayes classification. Learning efficiency approaching the information-theoretical limit is achieved in each layer of the MLANS.<<ETX>>\",\"PeriodicalId\":296300,\"journal\":{\"name\":\"[1991 Proceedings] IEEE Conference on Neural Networks for Ocean Engineering\",\"volume\":\"140 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1991-08-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"[1991 Proceedings] IEEE Conference on Neural Networks for Ocean Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICNN.1991.163357\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1991 Proceedings] IEEE Conference on Neural Networks for Ocean Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNN.1991.163357","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Model based classification of transient signals using the MLANS neural network
A maximum likelihood artificial neural system (MLANS) neural network is proposed for transient signal recognition. The MLANS learning efficiency greatly exceeds that of other neural networks and is approaching the information-theoretical limit on performance of any neural network or algorithm. The MLANS operates on a two-dimensional representation of the signal in either the short-term spectral or the Wigner transform domain. The first layer of the network uses structured second-order neurons to estimate the signal model from training data. A second layer performs optimal multimodal Bayes classification. Learning efficiency approaching the information-theoretical limit is achieved in each layer of the MLANS.<>