基于差分隐私k-means的轨迹数据保护

Qiyuan Xu, Z. Chen, Baochuan Fu, Xue-Jun Shao
{"title":"基于差分隐私k-means的轨迹数据保护","authors":"Qiyuan Xu, Z. Chen, Baochuan Fu, Xue-Jun Shao","doi":"10.23919/CCC50068.2020.9188564","DOIUrl":null,"url":null,"abstract":"Considering that the existing trajectory data protection methods will result in low data availability, this paper considers the characteristics of trajectory data. It proposes a trajectory data protection method that satisfies differential privacy. It not only protects the privacy of the user’s trajectory but also has certain data analyzability. First, with the introduction of the weighted-multi-point judgment method, the infection points in the trajectory are found by setting the threshold of the infection angle. Second, the density of each trajectory point is calculated so as to determine the initial clustering center point. In addition, the privacy protection of the trajectory data is processed with the use of an improved differential privacy k − means method, which improves the availability of the trajectory data on the premise of satisfying the differential privacy. Finally, some numerical experiments are carried out to verify the effectiveness of the method.","PeriodicalId":255872,"journal":{"name":"2020 39th Chinese Control Conference (CCC)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Trajectory Data Protection based on Differential Privacy k-means\",\"authors\":\"Qiyuan Xu, Z. Chen, Baochuan Fu, Xue-Jun Shao\",\"doi\":\"10.23919/CCC50068.2020.9188564\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Considering that the existing trajectory data protection methods will result in low data availability, this paper considers the characteristics of trajectory data. It proposes a trajectory data protection method that satisfies differential privacy. It not only protects the privacy of the user’s trajectory but also has certain data analyzability. First, with the introduction of the weighted-multi-point judgment method, the infection points in the trajectory are found by setting the threshold of the infection angle. Second, the density of each trajectory point is calculated so as to determine the initial clustering center point. In addition, the privacy protection of the trajectory data is processed with the use of an improved differential privacy k − means method, which improves the availability of the trajectory data on the premise of satisfying the differential privacy. Finally, some numerical experiments are carried out to verify the effectiveness of the method.\",\"PeriodicalId\":255872,\"journal\":{\"name\":\"2020 39th Chinese Control Conference (CCC)\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 39th Chinese Control Conference (CCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/CCC50068.2020.9188564\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 39th Chinese Control Conference (CCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/CCC50068.2020.9188564","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

考虑到现有的弹道数据保护方法会导致数据可用性低,本文考虑了弹道数据的特点。提出了一种满足差分隐私的轨迹数据保护方法。它既保护了用户轨迹的隐私性,又具有一定的数据可分析性。首先,引入加权多点判断方法,通过设定感染角阈值,找到轨迹上的感染点;其次,计算每个轨迹点的密度,确定初始聚类中心点;此外,采用改进的差分隐私k−means方法对轨迹数据进行隐私保护,在满足差分隐私的前提下提高了轨迹数据的可用性。最后,通过数值实验验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Trajectory Data Protection based on Differential Privacy k-means
Considering that the existing trajectory data protection methods will result in low data availability, this paper considers the characteristics of trajectory data. It proposes a trajectory data protection method that satisfies differential privacy. It not only protects the privacy of the user’s trajectory but also has certain data analyzability. First, with the introduction of the weighted-multi-point judgment method, the infection points in the trajectory are found by setting the threshold of the infection angle. Second, the density of each trajectory point is calculated so as to determine the initial clustering center point. In addition, the privacy protection of the trajectory data is processed with the use of an improved differential privacy k − means method, which improves the availability of the trajectory data on the premise of satisfying the differential privacy. Finally, some numerical experiments are carried out to verify the effectiveness of the method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Matrix-based Algorithm for the LS Design of Variable Fractional Delay FIR Filters with Constraints MPC Control and Simulation of a Mixed Recovery Dual Channel Closed-Loop Supply Chain with Lead Time Fractional-order ADRC framework for fractional-order parallel systems A Moving Target Tracking Control and Obstacle Avoidance of Quadrotor UAV Based on Sliding Mode Control Using Artificial Potential Field and RBF Neural Networks Finite-time Pinning Synchronization and Parameters Identification of Markovian Switching Complex Delayed Network with Stochastic Perturbations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1