一种挖掘频繁项集的新方法:AprioriMin

Houda Essalmi, M. E. Far, M. E. Mohajir, M. Chahhou
{"title":"一种挖掘频繁项集的新方法:AprioriMin","authors":"Houda Essalmi, M. E. Far, M. E. Mohajir, M. Chahhou","doi":"10.1109/CIST.2016.7805057","DOIUrl":null,"url":null,"abstract":"The step of mining frequent itemsets in database is the essential step and most expensive in the process of mining association rules in data mining task, many algorithms of mining frequent itemsets have been proposed to improve the performance of Apriori Algorithm. In this paper, we have introduced an optimization in the phase of generation pruning of candidates by a new strategy for the calculation of frequent itemsets based on approximate values of supports exact the itemsets. We have evaluated our algorithm AprioriMin against three popular frequent itemsets mining algorithms - Apriori and FP-growth, Close using two data sets with a variety of minimum support.","PeriodicalId":196827,"journal":{"name":"2016 4th IEEE International Colloquium on Information Science and Technology (CiSt)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"A novel approach for mining frequent itemsets: AprioriMin\",\"authors\":\"Houda Essalmi, M. E. Far, M. E. Mohajir, M. Chahhou\",\"doi\":\"10.1109/CIST.2016.7805057\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The step of mining frequent itemsets in database is the essential step and most expensive in the process of mining association rules in data mining task, many algorithms of mining frequent itemsets have been proposed to improve the performance of Apriori Algorithm. In this paper, we have introduced an optimization in the phase of generation pruning of candidates by a new strategy for the calculation of frequent itemsets based on approximate values of supports exact the itemsets. We have evaluated our algorithm AprioriMin against three popular frequent itemsets mining algorithms - Apriori and FP-growth, Close using two data sets with a variety of minimum support.\",\"PeriodicalId\":196827,\"journal\":{\"name\":\"2016 4th IEEE International Colloquium on Information Science and Technology (CiSt)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 4th IEEE International Colloquium on Information Science and Technology (CiSt)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIST.2016.7805057\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 4th IEEE International Colloquium on Information Science and Technology (CiSt)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIST.2016.7805057","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

在数据挖掘任务中,频繁项集的挖掘是关联规则挖掘过程中最重要也是最昂贵的一步,为了提高Apriori算法的性能,人们提出了许多频繁项集的挖掘算法。本文提出了一种基于频繁项集支持度近似值计算频繁项集的新策略,在候选项的生成剪枝阶段进行优化。我们将我们的算法AprioriMin与三种流行的频繁项集挖掘算法(Apriori和FP-growth)进行了比较,并使用了具有各种最小支持度的两个数据集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A novel approach for mining frequent itemsets: AprioriMin
The step of mining frequent itemsets in database is the essential step and most expensive in the process of mining association rules in data mining task, many algorithms of mining frequent itemsets have been proposed to improve the performance of Apriori Algorithm. In this paper, we have introduced an optimization in the phase of generation pruning of candidates by a new strategy for the calculation of frequent itemsets based on approximate values of supports exact the itemsets. We have evaluated our algorithm AprioriMin against three popular frequent itemsets mining algorithms - Apriori and FP-growth, Close using two data sets with a variety of minimum support.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Semantically enhanced term frequency based on word embeddings for Arabic information retrieval Automatic generation of TestNG tests cases from UML sequence diagrams in Scrum process Coordination by sharing demand forecasts in a supply chain using game theoretic approach Robust approach for textured image clustering High speed efficient FPGA implementation of pipelined AES S-Box
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1