对数序列分布参数的偏校正极大似然估计量及其表征

Mahdi Rasekhi, Gholamhossein G. Hamedani
{"title":"对数序列分布参数的偏校正极大似然估计量及其表征","authors":"Mahdi Rasekhi, Gholamhossein G. Hamedani","doi":"10.52547/jsri.16.1.59","DOIUrl":null,"url":null,"abstract":". In this article, we study parameter estimation of the logarith mic series distribution. A well-known method of estimation is the maximum likelihood estimate (MLE) and this method for this distribution resulted in a biased estimator for the small sample size datasets. The goal here is to reduce the bias and root mean square error of MLE of the unknown pa rameter. Employing the Cox and Snell method, a closed-form expression for the bias-reduction of the maximum likelihood estimator of the parame ter is obtained. Moreover, the parametric Bootstrap bias correction of the maximum likelihood estimator is studied. The performance of the proposed estimators is investigated via Monte Carlo simulation studies. The numeri cal results show that the analytical bias-corrected estimator performs better than bootstrapped-based estimator and MLE for small sample sizes. Also, certain useful characterizations of this distribution are presented. An exam ple via a real dataset is presented for the illustrative purposes.","PeriodicalId":422124,"journal":{"name":"Journal of Statistical Research of Iran","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bias-corrected Maximum-Likelihood Estimator for the Parameter of the Logarithmic Series Distribution and its Characterizations\",\"authors\":\"Mahdi Rasekhi, Gholamhossein G. Hamedani\",\"doi\":\"10.52547/jsri.16.1.59\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". In this article, we study parameter estimation of the logarith mic series distribution. A well-known method of estimation is the maximum likelihood estimate (MLE) and this method for this distribution resulted in a biased estimator for the small sample size datasets. The goal here is to reduce the bias and root mean square error of MLE of the unknown pa rameter. Employing the Cox and Snell method, a closed-form expression for the bias-reduction of the maximum likelihood estimator of the parame ter is obtained. Moreover, the parametric Bootstrap bias correction of the maximum likelihood estimator is studied. The performance of the proposed estimators is investigated via Monte Carlo simulation studies. The numeri cal results show that the analytical bias-corrected estimator performs better than bootstrapped-based estimator and MLE for small sample sizes. Also, certain useful characterizations of this distribution are presented. An exam ple via a real dataset is presented for the illustrative purposes.\",\"PeriodicalId\":422124,\"journal\":{\"name\":\"Journal of Statistical Research of Iran\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Statistical Research of Iran\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.52547/jsri.16.1.59\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Statistical Research of Iran","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52547/jsri.16.1.59","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

. 本文研究了对数mic级数分布的参数估计。一种众所周知的估计方法是最大似然估计(MLE),这种分布方法导致小样本数据集的有偏估计。这里的目标是减少未知参数的最大似然的偏差和均方根误差。利用Cox和Snell方法,得到了参数的最大似然估计量的偏约化的封闭表达式。此外,还研究了极大似然估计的参数自举偏差校正问题。通过蒙特卡洛仿真研究了所提估计器的性能。数值结果表明,在小样本情况下,分析偏校正估计器的性能优于基于自举的估计器和最大似然估计器。此外,还介绍了这种分布的一些有用的特征。为了说明问题,本文给出了一个真实数据集的测试示例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Bias-corrected Maximum-Likelihood Estimator for the Parameter of the Logarithmic Series Distribution and its Characterizations
. In this article, we study parameter estimation of the logarith mic series distribution. A well-known method of estimation is the maximum likelihood estimate (MLE) and this method for this distribution resulted in a biased estimator for the small sample size datasets. The goal here is to reduce the bias and root mean square error of MLE of the unknown pa rameter. Employing the Cox and Snell method, a closed-form expression for the bias-reduction of the maximum likelihood estimator of the parame ter is obtained. Moreover, the parametric Bootstrap bias correction of the maximum likelihood estimator is studied. The performance of the proposed estimators is investigated via Monte Carlo simulation studies. The numeri cal results show that the analytical bias-corrected estimator performs better than bootstrapped-based estimator and MLE for small sample sizes. Also, certain useful characterizations of this distribution are presented. An exam ple via a real dataset is presented for the illustrative purposes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Goodness of Fit Tests based on Information Criterion for Randomly Censored Data Joint Modeling for Zero-Inflated Beta-Binomial and Normal Responses Best Linear Predictors in a Stationary Second Order Autoregressive process by means of near and far observations A Note on the Identifiability of General Bayesian Gaussian Models Simulated Synthetic Population Projection Using an Extended Model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1