基于光谱回归判别分析的头部姿态估计

Caifeng Shan, Wei Chen
{"title":"基于光谱回归判别分析的头部姿态估计","authors":"Caifeng Shan, Wei Chen","doi":"10.1109/CVPRW.2009.5204261","DOIUrl":null,"url":null,"abstract":"In this paper, we investigate a recently proposed efficient subspace learning method, Spectral Regression Discriminant Analysis (SRDA), and its kernel version SRKDA for head pose estimation. One important unsolved issue of SRDA is how to automatically determine an appropriate regularization parameter. The parameter, which was empirically set in the existing work, has great impact on its performance. By formulating it as a constrained optimization problem, we present a method to estimate the optimal regularization parameter in SRDA and SRKDA. Our experiments on two databases illustrate that SRDA, especially SRKDA, is promising for head pose estimation. Moreover, our approach for estimating the regularization parameter is shown to be effective in head pose estimation and face recognition experiments.","PeriodicalId":431981,"journal":{"name":"2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Head pose estimation using Spectral Regression Discriminant Analysis\",\"authors\":\"Caifeng Shan, Wei Chen\",\"doi\":\"10.1109/CVPRW.2009.5204261\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we investigate a recently proposed efficient subspace learning method, Spectral Regression Discriminant Analysis (SRDA), and its kernel version SRKDA for head pose estimation. One important unsolved issue of SRDA is how to automatically determine an appropriate regularization parameter. The parameter, which was empirically set in the existing work, has great impact on its performance. By formulating it as a constrained optimization problem, we present a method to estimate the optimal regularization parameter in SRDA and SRKDA. Our experiments on two databases illustrate that SRDA, especially SRKDA, is promising for head pose estimation. Moreover, our approach for estimating the regularization parameter is shown to be effective in head pose estimation and face recognition experiments.\",\"PeriodicalId\":431981,\"journal\":{\"name\":\"2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPRW.2009.5204261\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPRW.2009.5204261","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

在本文中,我们研究了最近提出的一种有效的子空间学习方法,光谱回归判别分析(SRDA)及其核版本SRKDA,用于头部姿态估计。SRDA尚未解决的一个重要问题是如何自动确定合适的正则化参数。该参数是现有工作中经验性设置的,对其性能影响较大。通过将其表述为约束优化问题,我们提出了一种估计SRDA和SRKDA中最优正则化参数的方法。我们在两个数据库上的实验表明,SRDA,尤其是SRKDA,在头姿估计方面是很有前景的。此外,我们的正则化参数估计方法在头部姿态估计和人脸识别实验中被证明是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Head pose estimation using Spectral Regression Discriminant Analysis
In this paper, we investigate a recently proposed efficient subspace learning method, Spectral Regression Discriminant Analysis (SRDA), and its kernel version SRKDA for head pose estimation. One important unsolved issue of SRDA is how to automatically determine an appropriate regularization parameter. The parameter, which was empirically set in the existing work, has great impact on its performance. By formulating it as a constrained optimization problem, we present a method to estimate the optimal regularization parameter in SRDA and SRKDA. Our experiments on two databases illustrate that SRDA, especially SRKDA, is promising for head pose estimation. Moreover, our approach for estimating the regularization parameter is shown to be effective in head pose estimation and face recognition experiments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Robust real-time 3D modeling of static scenes using solely a Time-of-Flight sensor Image matching in large scale indoor environment Learning to segment using machine-learned penalized logistic models Modeling and exploiting the spatio-temporal facial action dependencies for robust spontaneous facial expression recognition Fuzzy statistical modeling of dynamic backgrounds for moving object detection in infrared videos
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1