利用软机器人的流体阻力

Chaim C. Futran, Steven Ceron, B. M. Murray, R. Shepherd, Kirstin H. Petersen
{"title":"利用软机器人的流体阻力","authors":"Chaim C. Futran, Steven Ceron, B. M. Murray, R. Shepherd, Kirstin H. Petersen","doi":"10.1109/ROBOSOFT.2018.8405371","DOIUrl":null,"url":null,"abstract":"A key advantage to Fluidic Elastomer Actuators (FEA) is that they permit easy fabrication of robots capable of sophisticated manipulation and mobility. This advantage arises primarily from the continuous stretching and relaxation of elastomeric material that defines an active degree of freedom (DOF), prescribed during the manufacturing process. While the low elastic moduli of the soft material allows for infinite passive DOFs, each active DOF typically requires a valve and/or pump. On-board valving adds weight and size to the robots, and off-board valving requires tubing that imparts resistance to flow and requires higher pressure differentials for reasonable actuation velocities. In contrast to these methods, the work presented here exploits fluidic resistance in poroelastic foam actuators to create a traveling wave using only a single valve and pressure inlet. This concept is evaluated with respect to foam volume and fluid viscosity, and further demonstrated in a three-legged robot capable of millipede-inspired locomotion. The robot is capable of traveling at ∼1.1 mm/s, with individual legs (closest to the inlet) extending 41.28, 27.36, and 12.95 mm. These results represents an important step towards increasingly complex behavior in soft robots that remain simple to fabricate and control.","PeriodicalId":306255,"journal":{"name":"2018 IEEE International Conference on Soft Robotics (RoboSoft)","volume":"138 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Leveraging fluid resistance in soft robots\",\"authors\":\"Chaim C. Futran, Steven Ceron, B. M. Murray, R. Shepherd, Kirstin H. Petersen\",\"doi\":\"10.1109/ROBOSOFT.2018.8405371\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A key advantage to Fluidic Elastomer Actuators (FEA) is that they permit easy fabrication of robots capable of sophisticated manipulation and mobility. This advantage arises primarily from the continuous stretching and relaxation of elastomeric material that defines an active degree of freedom (DOF), prescribed during the manufacturing process. While the low elastic moduli of the soft material allows for infinite passive DOFs, each active DOF typically requires a valve and/or pump. On-board valving adds weight and size to the robots, and off-board valving requires tubing that imparts resistance to flow and requires higher pressure differentials for reasonable actuation velocities. In contrast to these methods, the work presented here exploits fluidic resistance in poroelastic foam actuators to create a traveling wave using only a single valve and pressure inlet. This concept is evaluated with respect to foam volume and fluid viscosity, and further demonstrated in a three-legged robot capable of millipede-inspired locomotion. The robot is capable of traveling at ∼1.1 mm/s, with individual legs (closest to the inlet) extending 41.28, 27.36, and 12.95 mm. These results represents an important step towards increasingly complex behavior in soft robots that remain simple to fabricate and control.\",\"PeriodicalId\":306255,\"journal\":{\"name\":\"2018 IEEE International Conference on Soft Robotics (RoboSoft)\",\"volume\":\"138 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Conference on Soft Robotics (RoboSoft)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ROBOSOFT.2018.8405371\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Soft Robotics (RoboSoft)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROBOSOFT.2018.8405371","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

流体弹性体执行器(FEA)的一个关键优势是,它们允许容易地制造能够复杂操作和移动的机器人。这种优势主要来自弹性体材料的持续拉伸和松弛,这定义了制造过程中规定的主动自由度(DOF)。虽然软材料的低弹性模量允许无限的被动自由度,但每个主动自由度通常需要一个阀门和/或泵。船上阀门增加了机器人的重量和尺寸,而船上阀门需要油管来抵抗流动,并且需要更高的压差来实现合理的驱动速度。与这些方法相反,这里提出的工作利用孔隙弹性泡沫执行器中的流体阻力,仅使用单个阀门和压力入口来产生行波。这一概念在泡沫体积和流体粘度方面进行了评估,并在一个能够像千足虫一样运动的三足机器人中得到了进一步的证明。机器人能够以约1.1 mm/s的速度移动,单个腿(最靠近入口)延伸41.28、27.36和12.95 mm。这些结果代表了软体机器人向越来越复杂的行为迈出了重要的一步,而软体机器人的制造和控制仍然很简单。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Leveraging fluid resistance in soft robots
A key advantage to Fluidic Elastomer Actuators (FEA) is that they permit easy fabrication of robots capable of sophisticated manipulation and mobility. This advantage arises primarily from the continuous stretching and relaxation of elastomeric material that defines an active degree of freedom (DOF), prescribed during the manufacturing process. While the low elastic moduli of the soft material allows for infinite passive DOFs, each active DOF typically requires a valve and/or pump. On-board valving adds weight and size to the robots, and off-board valving requires tubing that imparts resistance to flow and requires higher pressure differentials for reasonable actuation velocities. In contrast to these methods, the work presented here exploits fluidic resistance in poroelastic foam actuators to create a traveling wave using only a single valve and pressure inlet. This concept is evaluated with respect to foam volume and fluid viscosity, and further demonstrated in a three-legged robot capable of millipede-inspired locomotion. The robot is capable of traveling at ∼1.1 mm/s, with individual legs (closest to the inlet) extending 41.28, 27.36, and 12.95 mm. These results represents an important step towards increasingly complex behavior in soft robots that remain simple to fabricate and control.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Low profile stretch sensor for soft wearable robotics MultiTip: A multimodal mechano-thermal soft fingertip Trajectory tracking of a one-DOF manipulator using multiple fishing line actuators by iterative learning control Effect of base rotation on the controllability of a redundant soft robotic arm Strain sensor-embedded soft pneumatic actuators for extension and bending feedback
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1