用户行为图:网络安全会话数据的可视化探索

Siming Chen, Shuai Chen, N. Andrienko, G. Andrienko, P. H. Nguyen, C. Turkay, Olivier Thonnard, Xiaoru Yuan
{"title":"用户行为图:网络安全会话数据的可视化探索","authors":"Siming Chen, Shuai Chen, N. Andrienko, G. Andrienko, P. H. Nguyen, C. Turkay, Olivier Thonnard, Xiaoru Yuan","doi":"10.1109/VIZSEC.2018.8709223","DOIUrl":null,"url":null,"abstract":"User behavior analysis is complex and especially crucial in the cyber security domain. Understanding dynamic and multi-variate user behavior are challenging. Traditional sequential and timeline based method cannot easily address the complexity of temporal and relational features of user behaviors. We propose a map-based visual metaphor and create an interactive map for encoding user behaviors. It enables analysts to explore and identify user behavior patterns and helps them to understand why some behaviors are regarded as anomalous. We experiment with a real dataset containing multiple user sessions, consisting of sequences of diverse types of actions. In the behavior map, we encode an action as a city and user sessions as trajectories going through the cities. The position of the cities is determined by the sequential and temporal relationship of actions. Spatial and temporal patterns on the map reflect behavior patterns in the action space. In the case study, we illustrate how we explore relationships between actions, identify patterns of the typical session and detect anomaly behaviors.","PeriodicalId":412565,"journal":{"name":"2018 IEEE Symposium on Visualization for Cyber Security (VizSec)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"User Behavior Map: Visual Exploration for Cyber Security Session Data\",\"authors\":\"Siming Chen, Shuai Chen, N. Andrienko, G. Andrienko, P. H. Nguyen, C. Turkay, Olivier Thonnard, Xiaoru Yuan\",\"doi\":\"10.1109/VIZSEC.2018.8709223\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"User behavior analysis is complex and especially crucial in the cyber security domain. Understanding dynamic and multi-variate user behavior are challenging. Traditional sequential and timeline based method cannot easily address the complexity of temporal and relational features of user behaviors. We propose a map-based visual metaphor and create an interactive map for encoding user behaviors. It enables analysts to explore and identify user behavior patterns and helps them to understand why some behaviors are regarded as anomalous. We experiment with a real dataset containing multiple user sessions, consisting of sequences of diverse types of actions. In the behavior map, we encode an action as a city and user sessions as trajectories going through the cities. The position of the cities is determined by the sequential and temporal relationship of actions. Spatial and temporal patterns on the map reflect behavior patterns in the action space. In the case study, we illustrate how we explore relationships between actions, identify patterns of the typical session and detect anomaly behaviors.\",\"PeriodicalId\":412565,\"journal\":{\"name\":\"2018 IEEE Symposium on Visualization for Cyber Security (VizSec)\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE Symposium on Visualization for Cyber Security (VizSec)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VIZSEC.2018.8709223\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Symposium on Visualization for Cyber Security (VizSec)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VIZSEC.2018.8709223","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

用户行为分析非常复杂,在网络安全领域尤为重要。理解动态和多变量的用户行为是具有挑战性的。传统的基于序列和时间线的方法不能很容易地处理用户行为的时间和关系特征的复杂性。我们提出了一种基于地图的视觉隐喻,并创建了一种用于编码用户行为的交互式地图。它使分析人员能够探索和识别用户行为模式,并帮助他们理解为什么一些行为被认为是异常的。我们使用包含多个用户会话的真实数据集进行实验,该数据集由不同类型的动作序列组成。在行为图中,我们将一个动作编码为一个城市,将用户会话编码为穿过城市的轨迹。城市的位置是由行动的顺序和时间关系决定的。地图上的空间和时间模式反映了行动空间中的行为模式。在案例研究中,我们说明了如何探索操作之间的关系,识别典型会话的模式并检测异常行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
User Behavior Map: Visual Exploration for Cyber Security Session Data
User behavior analysis is complex and especially crucial in the cyber security domain. Understanding dynamic and multi-variate user behavior are challenging. Traditional sequential and timeline based method cannot easily address the complexity of temporal and relational features of user behaviors. We propose a map-based visual metaphor and create an interactive map for encoding user behaviors. It enables analysts to explore and identify user behavior patterns and helps them to understand why some behaviors are regarded as anomalous. We experiment with a real dataset containing multiple user sessions, consisting of sequences of diverse types of actions. In the behavior map, we encode an action as a city and user sessions as trajectories going through the cities. The position of the cities is determined by the sequential and temporal relationship of actions. Spatial and temporal patterns on the map reflect behavior patterns in the action space. In the case study, we illustrate how we explore relationships between actions, identify patterns of the typical session and detect anomaly behaviors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Visual Analytics for Root DNS Data TAPESTRY: Visualizing Interwoven Identities for Trust Provenance Visual-Interactive Identification of Anomalous IP-Block Behavior Using Geo-IP Data ROPMate: Visually Assisting the Creation of ROP-based Exploits User Behavior Map: Visual Exploration for Cyber Security Session Data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1