基于带状波变换和中心对称局部二值模式的面部表情识别

Gaurav V. Deshmukh, S. Bhandari
{"title":"基于带状波变换和中心对称局部二值模式的面部表情识别","authors":"Gaurav V. Deshmukh, S. Bhandari","doi":"10.1109/SPIN.2018.8474037","DOIUrl":null,"url":null,"abstract":"Humans interact socially with the help of facial expressions. Even health states or pains are reflected through facial expressions and hence can be useful in healthcare. Here, a facial expression recognition system is proposed. The bandlet transform is performed on face image to generate quadtree. Then on the output of bandlet transform centre symmetric - local binary pattern (CS-LBP) is applied. A feature vector of the image is generated by taking the histogram of CS-LBP. The support vector machine (SVM) is used to classify expressions in six categories. The experiments are performed using a publically available CK+ dataset. The initial results with LBP and CS-LBP are reported.","PeriodicalId":184596,"journal":{"name":"2018 5th International Conference on Signal Processing and Integrated Networks (SPIN)","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Facial Expression Recognition using Bandlet Transform and Centre Symmetric – Local Binary Pattern\",\"authors\":\"Gaurav V. Deshmukh, S. Bhandari\",\"doi\":\"10.1109/SPIN.2018.8474037\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Humans interact socially with the help of facial expressions. Even health states or pains are reflected through facial expressions and hence can be useful in healthcare. Here, a facial expression recognition system is proposed. The bandlet transform is performed on face image to generate quadtree. Then on the output of bandlet transform centre symmetric - local binary pattern (CS-LBP) is applied. A feature vector of the image is generated by taking the histogram of CS-LBP. The support vector machine (SVM) is used to classify expressions in six categories. The experiments are performed using a publically available CK+ dataset. The initial results with LBP and CS-LBP are reported.\",\"PeriodicalId\":184596,\"journal\":{\"name\":\"2018 5th International Conference on Signal Processing and Integrated Networks (SPIN)\",\"volume\":\"52 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 5th International Conference on Signal Processing and Integrated Networks (SPIN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SPIN.2018.8474037\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 5th International Conference on Signal Processing and Integrated Networks (SPIN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPIN.2018.8474037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

人类通过面部表情进行社交互动。甚至健康状况或疼痛也会通过面部表情反映出来,因此在医疗保健中很有用。本文提出了一种面部表情识别系统。对人脸图像进行小波变换,生成四叉树。然后在小带变换的输出上应用中心对称-局部二值模式(CS-LBP)。取CS-LBP的直方图生成图像的特征向量。支持向量机(SVM)用于将表达式分为六类。实验是使用公开可用的CK+数据集进行的。本文报道了LBP和CS-LBP的初步结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Facial Expression Recognition using Bandlet Transform and Centre Symmetric – Local Binary Pattern
Humans interact socially with the help of facial expressions. Even health states or pains are reflected through facial expressions and hence can be useful in healthcare. Here, a facial expression recognition system is proposed. The bandlet transform is performed on face image to generate quadtree. Then on the output of bandlet transform centre symmetric - local binary pattern (CS-LBP) is applied. A feature vector of the image is generated by taking the histogram of CS-LBP. The support vector machine (SVM) is used to classify expressions in six categories. The experiments are performed using a publically available CK+ dataset. The initial results with LBP and CS-LBP are reported.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
CPW-Fed UWB Flexible Antenna for GSM/WLAN/X-Band Applications Deep Convolution Neural Network Based Speech Recognition for Chhattisgarhi PLCC System Performance with Complex Channel-Gain and QPSK Signaling A Novel HEED Protocol for Wireless Sensor Networks Computer Based Automatic Segmentation of Pap smear Cells for Cervical Cancer Detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1