基于混合神经-马尔可夫模型的句子识别

S. Marukatat, T. Artières, P. Gallinari, B. Dorizzi
{"title":"基于混合神经-马尔可夫模型的句子识别","authors":"S. Marukatat, T. Artières, P. Gallinari, B. Dorizzi","doi":"10.1109/ICDAR.2001.953886","DOIUrl":null,"url":null,"abstract":"This paper focuses on designing a handwriting recognition system dealing with on-line signal, i.e. temporal handwriting signal captured through an electronic pen or a digitalized tablet. We present here some new results concerning a hybrid on-line handwriting recognition system based on Hidden Markov Models (HMMs) and Neural Networks (NNs), which has already been presented in several contributions. In our approach, a letter-model is a Left-Right HMM, whose emission probability densities are approximated with mixtures of predictive multilayer perceptrons. The basic letter models are cascaded in order to build models for words and sentences. At the word level, recognition is performed thanks to a dictionary organized with a tree-structure. At the sentence level, a word-predecessor conditioned frame synchronous beam search algorithm allows to perform simultaneously segmentation into words and word recognition. It processes through the building of a word graph from which a set of candidate sentences may be extracted. Word and sentence recognition performances are evaluated on parts of the UNIPEN international database.","PeriodicalId":277816,"journal":{"name":"Proceedings of Sixth International Conference on Document Analysis and Recognition","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"38","resultStr":"{\"title\":\"Sentence recognition through hybrid neuro-Markovian modeling\",\"authors\":\"S. Marukatat, T. Artières, P. Gallinari, B. Dorizzi\",\"doi\":\"10.1109/ICDAR.2001.953886\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper focuses on designing a handwriting recognition system dealing with on-line signal, i.e. temporal handwriting signal captured through an electronic pen or a digitalized tablet. We present here some new results concerning a hybrid on-line handwriting recognition system based on Hidden Markov Models (HMMs) and Neural Networks (NNs), which has already been presented in several contributions. In our approach, a letter-model is a Left-Right HMM, whose emission probability densities are approximated with mixtures of predictive multilayer perceptrons. The basic letter models are cascaded in order to build models for words and sentences. At the word level, recognition is performed thanks to a dictionary organized with a tree-structure. At the sentence level, a word-predecessor conditioned frame synchronous beam search algorithm allows to perform simultaneously segmentation into words and word recognition. It processes through the building of a word graph from which a set of candidate sentences may be extracted. Word and sentence recognition performances are evaluated on parts of the UNIPEN international database.\",\"PeriodicalId\":277816,\"journal\":{\"name\":\"Proceedings of Sixth International Conference on Document Analysis and Recognition\",\"volume\":\"52 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"38\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of Sixth International Conference on Document Analysis and Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDAR.2001.953886\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of Sixth International Conference on Document Analysis and Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDAR.2001.953886","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 38

摘要

本文重点设计了一种处理在线信号的手写识别系统,即通过电子笔或数字化平板电脑捕获的实时手写信号。本文介绍了基于隐马尔可夫模型(hmm)和神经网络(nn)的混合在线手写识别系统的一些新结果,这些结果已经在一些论文中提出。在我们的方法中,字母模型是一个左-右HMM,其发射概率密度由预测多层感知器的混合物近似。基本的字母模型是级联的,以便为单词和句子建立模型。在单词级别,通过树形结构组织的字典进行识别。在句子级,一个词前条件框架同步束搜索算法允许同时执行分割成词和词识别。它通过建立一个词图来处理,从中可以提取出一组候选句子。在UNIPEN国际数据库的部分数据上对单词和句子识别性能进行了评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Sentence recognition through hybrid neuro-Markovian modeling
This paper focuses on designing a handwriting recognition system dealing with on-line signal, i.e. temporal handwriting signal captured through an electronic pen or a digitalized tablet. We present here some new results concerning a hybrid on-line handwriting recognition system based on Hidden Markov Models (HMMs) and Neural Networks (NNs), which has already been presented in several contributions. In our approach, a letter-model is a Left-Right HMM, whose emission probability densities are approximated with mixtures of predictive multilayer perceptrons. The basic letter models are cascaded in order to build models for words and sentences. At the word level, recognition is performed thanks to a dictionary organized with a tree-structure. At the sentence level, a word-predecessor conditioned frame synchronous beam search algorithm allows to perform simultaneously segmentation into words and word recognition. It processes through the building of a word graph from which a set of candidate sentences may be extracted. Word and sentence recognition performances are evaluated on parts of the UNIPEN international database.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A real-world evaluation of a generic document recognition method applied to a military form of the 19th century A feedback-based approach for segmenting handwritten legal amounts on bank cheques Accuracy improvement of handwritten numeral recognition by mirror image learning Synthetic data for Arabic OCR system development On the influence of vocabulary size and language models in unconstrained handwritten text recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1