用李克特量表变量进行t检验

P. Vieira
{"title":"用李克特量表变量进行t检验","authors":"P. Vieira","doi":"10.2139/ssrn.2770035","DOIUrl":null,"url":null,"abstract":"Although Likert scale is numeric, it is intrinsically ordinal (1 – Strongly disagree to 5 - Strongly agree). Even ordinal, due to convenience it is usual to use a t-test to evaluate whether two groups are significantly different (testing population mean with unknown variance). In this paper I will investigate if when we have a survey that uses a Likert Scale, it is adequate to use a t-test. I will use bootstrapping by first “imposing” that the population verifies the null hypothesis. I conclude that, the use of the t-test it is valid to compare groups even when the variable is measured a Likert scale and the populations does not have a normal distribution.","PeriodicalId":320844,"journal":{"name":"PSN: Econometrics","volume":"234 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"T-Test with Likert Scale Variables\",\"authors\":\"P. Vieira\",\"doi\":\"10.2139/ssrn.2770035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Although Likert scale is numeric, it is intrinsically ordinal (1 – Strongly disagree to 5 - Strongly agree). Even ordinal, due to convenience it is usual to use a t-test to evaluate whether two groups are significantly different (testing population mean with unknown variance). In this paper I will investigate if when we have a survey that uses a Likert Scale, it is adequate to use a t-test. I will use bootstrapping by first “imposing” that the population verifies the null hypothesis. I conclude that, the use of the t-test it is valid to compare groups even when the variable is measured a Likert scale and the populations does not have a normal distribution.\",\"PeriodicalId\":320844,\"journal\":{\"name\":\"PSN: Econometrics\",\"volume\":\"234 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PSN: Econometrics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.2770035\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PSN: Econometrics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.2770035","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

虽然李克特量表是数字,但它本质上是有序的(1 -强烈不同意到5 -强烈同意)。即使是有序的,由于方便,通常使用t检验来评估两个组是否显着不同(检验未知方差的总体均值)。在本文中,我将调查,如果我们有一个调查,使用李克特量表,它是足够的使用t检验。我将通过首先“强加”总体验证零假设来使用自举。我的结论是,使用t检验是有效的,即使变量是用李克特量表测量的,而且总体不是正态分布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
T-Test with Likert Scale Variables
Although Likert scale is numeric, it is intrinsically ordinal (1 – Strongly disagree to 5 - Strongly agree). Even ordinal, due to convenience it is usual to use a t-test to evaluate whether two groups are significantly different (testing population mean with unknown variance). In this paper I will investigate if when we have a survey that uses a Likert Scale, it is adequate to use a t-test. I will use bootstrapping by first “imposing” that the population verifies the null hypothesis. I conclude that, the use of the t-test it is valid to compare groups even when the variable is measured a Likert scale and the populations does not have a normal distribution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Robust Inference for Moment Condition Models without Rational Expectations Augmented cointegrating linear models with possibly strongly correlated stationary and nonstationary regressors regressors Structured Additive Regression and Tree Boosting Large-Scale Precision Matrix Estimation With SQUIC Error Correction Models and Regressions for Non-Cointegrated Variables
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1