介入依赖图:一种发现影响结构的方法

Jalal Etesami, N. Kiyavash
{"title":"介入依赖图:一种发现影响结构的方法","authors":"Jalal Etesami, N. Kiyavash","doi":"10.1109/ISIT.2016.7541481","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce a new type of graphical model, interventional dependency graphs, to encode interactions among processes. These type of graphical models are defined using a measure that captures the influence relationships based on the principle of intervention. Principle of intervention discovers an influence relationship by making assignment to certain variables while fixing other variables to see how these changes influence statistics of variables of interest. Furthermore, we derive some properties of the dynamics that can be inferred from these graphs and establish the relationship between this new graphical model and the directed information graphs used for causal inference.","PeriodicalId":198767,"journal":{"name":"2016 IEEE International Symposium on Information Theory (ISIT)","volume":"118 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Interventional dependency graphs: An approach for discovering influence structure\",\"authors\":\"Jalal Etesami, N. Kiyavash\",\"doi\":\"10.1109/ISIT.2016.7541481\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we introduce a new type of graphical model, interventional dependency graphs, to encode interactions among processes. These type of graphical models are defined using a measure that captures the influence relationships based on the principle of intervention. Principle of intervention discovers an influence relationship by making assignment to certain variables while fixing other variables to see how these changes influence statistics of variables of interest. Furthermore, we derive some properties of the dynamics that can be inferred from these graphs and establish the relationship between this new graphical model and the directed information graphs used for causal inference.\",\"PeriodicalId\":198767,\"journal\":{\"name\":\"2016 IEEE International Symposium on Information Theory (ISIT)\",\"volume\":\"118 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Symposium on Information Theory (ISIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIT.2016.7541481\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Symposium on Information Theory (ISIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT.2016.7541481","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在本文中,我们引入了一种新的图形模型,介入依赖图,来编码过程之间的交互。这些类型的图形模型是使用基于干预原则捕获影响关系的度量来定义的。干预原理通过对某些变量赋值同时固定其他变量来发现影响关系,以了解这些变化如何影响感兴趣变量的统计。此外,我们推导出了从这些图中可以推断出的动力学的一些性质,并建立了这种新的图模型与用于因果推理的有向信息图之间的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Interventional dependency graphs: An approach for discovering influence structure
In this paper, we introduce a new type of graphical model, interventional dependency graphs, to encode interactions among processes. These type of graphical models are defined using a measure that captures the influence relationships based on the principle of intervention. Principle of intervention discovers an influence relationship by making assignment to certain variables while fixing other variables to see how these changes influence statistics of variables of interest. Furthermore, we derive some properties of the dynamics that can be inferred from these graphs and establish the relationship between this new graphical model and the directed information graphs used for causal inference.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
String concatenation construction for Chebyshev permutation channel codes Cyclically symmetric entropy inequalities Near-capacity protograph doubly-generalized LDPC codes with block thresholds On the capacity of a class of dual-band interference channels Distributed detection over connected networks via one-bit quantizer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1