基于位置回归网络的人眼面部特征鲁棒定位

Chanwoong Kwak, Jaeyoon Jang, Hosub Yoon
{"title":"基于位置回归网络的人眼面部特征鲁棒定位","authors":"Chanwoong Kwak, Jaeyoon Jang, Hosub Yoon","doi":"10.1109/UR49135.2020.9144702","DOIUrl":null,"url":null,"abstract":"Facial landmark localization is essential for robot-human interaction. In particular, the human eye is more important because it can grasp a person’s interests. However, the traditional method does not consider eye changes from the dataset, so the limitation is clear, this paper presents a data augmentation method for acquiring various eye images and a method for creating a robust eye landmark model with 2-stage training. Experiments on augmented 300W-LP datasets show that our method outperforms performance than the previous method.","PeriodicalId":360208,"journal":{"name":"2020 17th International Conference on Ubiquitous Robots (UR)","volume":"153 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Facial Landmark Localization Robust on the Eyes with Position Regression Network\",\"authors\":\"Chanwoong Kwak, Jaeyoon Jang, Hosub Yoon\",\"doi\":\"10.1109/UR49135.2020.9144702\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Facial landmark localization is essential for robot-human interaction. In particular, the human eye is more important because it can grasp a person’s interests. However, the traditional method does not consider eye changes from the dataset, so the limitation is clear, this paper presents a data augmentation method for acquiring various eye images and a method for creating a robust eye landmark model with 2-stage training. Experiments on augmented 300W-LP datasets show that our method outperforms performance than the previous method.\",\"PeriodicalId\":360208,\"journal\":{\"name\":\"2020 17th International Conference on Ubiquitous Robots (UR)\",\"volume\":\"153 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 17th International Conference on Ubiquitous Robots (UR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/UR49135.2020.9144702\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 17th International Conference on Ubiquitous Robots (UR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UR49135.2020.9144702","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

面部地标定位是人机交互的关键。尤其是人的眼睛更重要,因为它能把握一个人的兴趣。然而,传统的方法没有考虑数据集中眼睛的变化,因此局限性明显,本文提出了一种获取各种眼睛图像的数据增强方法和一种通过两阶段训练创建鲁棒眼睛地标模型的方法。在300W-LP增广数据集上的实验表明,该方法的性能优于之前的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Facial Landmark Localization Robust on the Eyes with Position Regression Network
Facial landmark localization is essential for robot-human interaction. In particular, the human eye is more important because it can grasp a person’s interests. However, the traditional method does not consider eye changes from the dataset, so the limitation is clear, this paper presents a data augmentation method for acquiring various eye images and a method for creating a robust eye landmark model with 2-stage training. Experiments on augmented 300W-LP datasets show that our method outperforms performance than the previous method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Accuracy Improvement of Fisheye Stereo Camera by Combining Multiple Disparity Offset Maps Cloud Services for Culture Aware Conversation: Socially Assistive Robots and Virtual Assistants Robotic Path Planning for Inspection of Complex-Shaped Objects Prediction of expected Angle of knee joint of human lower limbs based on leg interaction A CNN-LSTM Hybrid Model for Ankle Joint Motion Recognition Method Based on sEMG
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1