基于cnn的新型肺炎检测方法

E. Erdem, Tolga Aydin
{"title":"基于cnn的新型肺炎检测方法","authors":"E. Erdem, Tolga Aydin","doi":"10.35377/SAUCIS.04.01.787030","DOIUrl":null,"url":null,"abstract":"Pneumonia is a seasonal infectious lung tissue inflammatory disease. According to the World Health Organization (WHO), early diagnosis of the disease reduces the risk of its transmission and death. Various deep learning and machine learning algorithms were used for pneumonia detection. This study aims to analyze the lung images and diagnose pneumonia disease by employing deep learning approaches. We have suggested a novel deep learning framework for the detection of pneumonia in lung. A comparison was made between the proposed new deep learning model and pre-trained deep learning models. 88.62% accuracy rate has been obtained from the proposed deep learning structure. It was observed that by utilizing the new deep neural network developed, the accuracy results of VGG16 (88.78%) and VGG19 (88.30%), which are among the popular deep learning architectures, can be approximated. The test results show that our proposed model has a better recall value (97.43%) (VGG16 (93.33%) and VGG19 (96.92%)), and a better F1-Score (91.45%) (VGG16 (91.22%) and VGG19 (91.19%)).","PeriodicalId":257636,"journal":{"name":"Sakarya University Journal of Computer and Information Sciences","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Detection of Pneumonia with a Novel CNN-based Approach\",\"authors\":\"E. Erdem, Tolga Aydin\",\"doi\":\"10.35377/SAUCIS.04.01.787030\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Pneumonia is a seasonal infectious lung tissue inflammatory disease. According to the World Health Organization (WHO), early diagnosis of the disease reduces the risk of its transmission and death. Various deep learning and machine learning algorithms were used for pneumonia detection. This study aims to analyze the lung images and diagnose pneumonia disease by employing deep learning approaches. We have suggested a novel deep learning framework for the detection of pneumonia in lung. A comparison was made between the proposed new deep learning model and pre-trained deep learning models. 88.62% accuracy rate has been obtained from the proposed deep learning structure. It was observed that by utilizing the new deep neural network developed, the accuracy results of VGG16 (88.78%) and VGG19 (88.30%), which are among the popular deep learning architectures, can be approximated. The test results show that our proposed model has a better recall value (97.43%) (VGG16 (93.33%) and VGG19 (96.92%)), and a better F1-Score (91.45%) (VGG16 (91.22%) and VGG19 (91.19%)).\",\"PeriodicalId\":257636,\"journal\":{\"name\":\"Sakarya University Journal of Computer and Information Sciences\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sakarya University Journal of Computer and Information Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.35377/SAUCIS.04.01.787030\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sakarya University Journal of Computer and Information Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35377/SAUCIS.04.01.787030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

肺炎是一种季节性的传染性肺组织炎症性疾病。根据世界卫生组织(世卫组织)的说法,这种疾病的早期诊断可以降低其传播和死亡的风险。各种深度学习和机器学习算法用于肺炎检测。本研究旨在利用深度学习方法分析肺部图像并诊断肺炎疾病。我们提出了一种新的用于肺部肺炎检测的深度学习框架。将提出的新深度学习模型与预训练的深度学习模型进行了比较。所提出的深度学习结构的准确率达到了88.62%。实验结果表明,利用所开发的深度神经网络,可以逼近当前流行的深度学习体系结构VGG16(88.78%)和VGG19(88.30%)的准确率。测试结果表明,我们提出的模型具有更好的召回值(97.43%)(VGG16(93.33%)和VGG19(96.92%))和更好的F1-Score (91.45%) (VGG16(91.22%)和VGG19(91.19%))。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Detection of Pneumonia with a Novel CNN-based Approach
Pneumonia is a seasonal infectious lung tissue inflammatory disease. According to the World Health Organization (WHO), early diagnosis of the disease reduces the risk of its transmission and death. Various deep learning and machine learning algorithms were used for pneumonia detection. This study aims to analyze the lung images and diagnose pneumonia disease by employing deep learning approaches. We have suggested a novel deep learning framework for the detection of pneumonia in lung. A comparison was made between the proposed new deep learning model and pre-trained deep learning models. 88.62% accuracy rate has been obtained from the proposed deep learning structure. It was observed that by utilizing the new deep neural network developed, the accuracy results of VGG16 (88.78%) and VGG19 (88.30%), which are among the popular deep learning architectures, can be approximated. The test results show that our proposed model has a better recall value (97.43%) (VGG16 (93.33%) and VGG19 (96.92%)), and a better F1-Score (91.45%) (VGG16 (91.22%) and VGG19 (91.19%)).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Prediction of Cardiovascular Disease Based on Voting Ensemble Model and SHAP Analysis A NOVEL ADDITIVE INTERNET OF THINGS (IoT) FEATURES AND CONVOLUTIONAL NEURAL NETWORK FOR CLASSIFICATION AND SOURCE IDENTIFICATION OF IoT DEVICES High-Capacity Multiplier Design Using Look Up Table Sequential and Correlated Image Hash Code Generation with Deep Reinforcement Learning Price Prediction Using Web Scraping and Machine Learning Algorithms in the Used Car Market
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1