有效地将线性递归函数编译成对象级循环

P. Harrison, H. Khoshnevisan
{"title":"有效地将线性递归函数编译成对象级循环","authors":"P. Harrison, H. Khoshnevisan","doi":"10.1145/12276.13332","DOIUrl":null,"url":null,"abstract":"Whilst widely recognised as an excellent means for solving problems and for designing software, functional programming languages have suffered from their inefficient implementations on conventional computers. A route to improved runtime performance is to transform recursively defined functions into programs which execute more quickly and/or consume less space. We derive equivalent imperative programming language loops for a large class of linear recursive functions of which the tail-recursive functions form a very small subset. We first identify a small set of primitive function defining expressions for which we determine the corresponding loop-expressions. We then determine the loop-expressions for linear functions defined by any expressions which are formed from those primitives. In this way, a very general class of linear functions can be transformed automatically into loops in the parsing phase of a compiler, since the parser has in any case to determine the hierarchical structure of function definitions. Further transformation may involve specific properties of particular defining expressions, and adopt previous schemes. In addition, equivalent linear functions can be found for many non-linear ones which can therefore also be transformed into loops.","PeriodicalId":414056,"journal":{"name":"SIGPLAN Conferences and Workshops","volume":"114 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1986-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Efficient compilation of linear recursive functions into object level loops\",\"authors\":\"P. Harrison, H. Khoshnevisan\",\"doi\":\"10.1145/12276.13332\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Whilst widely recognised as an excellent means for solving problems and for designing software, functional programming languages have suffered from their inefficient implementations on conventional computers. A route to improved runtime performance is to transform recursively defined functions into programs which execute more quickly and/or consume less space. We derive equivalent imperative programming language loops for a large class of linear recursive functions of which the tail-recursive functions form a very small subset. We first identify a small set of primitive function defining expressions for which we determine the corresponding loop-expressions. We then determine the loop-expressions for linear functions defined by any expressions which are formed from those primitives. In this way, a very general class of linear functions can be transformed automatically into loops in the parsing phase of a compiler, since the parser has in any case to determine the hierarchical structure of function definitions. Further transformation may involve specific properties of particular defining expressions, and adopt previous schemes. In addition, equivalent linear functions can be found for many non-linear ones which can therefore also be transformed into loops.\",\"PeriodicalId\":414056,\"journal\":{\"name\":\"SIGPLAN Conferences and Workshops\",\"volume\":\"114 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1986-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIGPLAN Conferences and Workshops\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/12276.13332\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIGPLAN Conferences and Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/12276.13332","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

虽然函数式编程语言被广泛认为是解决问题和设计软件的一种优秀方法,但它们在传统计算机上的实现效率低下。改进运行时性能的一个途径是将递归定义的函数转换为执行速度更快和/或消耗更少空间的程序。对于一类线性递归函数,我们导出了等效的命令式编程语言循环,其中尾递归函数是一个很小的子集。首先确定一小组定义表达式的原语函数,并为其确定相应的循环表达式。然后,我们确定由这些原语组成的任何表达式定义的线性函数的循环表达式。通过这种方式,可以在编译器的解析阶段将非常一般的线性函数类自动转换为循环,因为解析器在任何情况下都必须确定函数定义的层次结构。进一步的转换可能涉及特定定义表达式的特定属性,并采用先前的模式。此外,对于许多非线性函数,可以找到等效的线性函数,因此也可以将其转化为回路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Efficient compilation of linear recursive functions into object level loops
Whilst widely recognised as an excellent means for solving problems and for designing software, functional programming languages have suffered from their inefficient implementations on conventional computers. A route to improved runtime performance is to transform recursively defined functions into programs which execute more quickly and/or consume less space. We derive equivalent imperative programming language loops for a large class of linear recursive functions of which the tail-recursive functions form a very small subset. We first identify a small set of primitive function defining expressions for which we determine the corresponding loop-expressions. We then determine the loop-expressions for linear functions defined by any expressions which are formed from those primitives. In this way, a very general class of linear functions can be transformed automatically into loops in the parsing phase of a compiler, since the parser has in any case to determine the hierarchical structure of function definitions. Further transformation may involve specific properties of particular defining expressions, and adopt previous schemes. In addition, equivalent linear functions can be found for many non-linear ones which can therefore also be transformed into loops.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A practical method for syntactic error diagnosis and recovery The CIMS PL/I compiler A Fortran 77 interpreter for mutation analysis Cint: a RISC interpreter for the C programming language The Illinois functional programming interpreter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1