异构计算集群的可扩展密集分解

Ravi Reddy, Alexey L. Lastovetsky, P. Alonso
{"title":"异构计算集群的可扩展密集分解","authors":"Ravi Reddy, Alexey L. Lastovetsky, P. Alonso","doi":"10.1109/ISPDC.2008.10","DOIUrl":null,"url":null,"abstract":"This paper discusses the design and the implementation of the LU factorization routines included in the Heterogeneous ScaLAPACK library, which is built on top of ScaLAPACK. These routines are used in the factorization and solution of a dense system of linear equations. They are implemented using optimized PBLAS, BLACS and BLAS libraries for heterogeneous computational clusters. We present the details of the implementation as well as performance results on a heterogeneous computing cluster.","PeriodicalId":125975,"journal":{"name":"2008 International Symposium on Parallel and Distributed Computing","volume":"468 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Scalable Dense Factorizations for Heterogeneous Computational Clusters\",\"authors\":\"Ravi Reddy, Alexey L. Lastovetsky, P. Alonso\",\"doi\":\"10.1109/ISPDC.2008.10\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper discusses the design and the implementation of the LU factorization routines included in the Heterogeneous ScaLAPACK library, which is built on top of ScaLAPACK. These routines are used in the factorization and solution of a dense system of linear equations. They are implemented using optimized PBLAS, BLACS and BLAS libraries for heterogeneous computational clusters. We present the details of the implementation as well as performance results on a heterogeneous computing cluster.\",\"PeriodicalId\":125975,\"journal\":{\"name\":\"2008 International Symposium on Parallel and Distributed Computing\",\"volume\":\"468 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 International Symposium on Parallel and Distributed Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISPDC.2008.10\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 International Symposium on Parallel and Distributed Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPDC.2008.10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文讨论了基于ScaLAPACK构建的异构ScaLAPACK库中的逻辑单元分解例程的设计和实现。这些例程用于密集线性方程组的分解和求解。它们是使用针对异构计算集群的优化PBLAS、BLACS和BLAS库实现的。我们给出了实现的细节以及在异构计算集群上的性能结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Scalable Dense Factorizations for Heterogeneous Computational Clusters
This paper discusses the design and the implementation of the LU factorization routines included in the Heterogeneous ScaLAPACK library, which is built on top of ScaLAPACK. These routines are used in the factorization and solution of a dense system of linear equations. They are implemented using optimized PBLAS, BLACS and BLAS libraries for heterogeneous computational clusters. We present the details of the implementation as well as performance results on a heterogeneous computing cluster.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Towards Security Hardening of Scientific Demand-Driven and Pipelined Distributed Computing Systems A Runtime System Architecture for Ubiquitous Support of OpenMP Context Modeling for Urban Mobile Applications Derivation Control Environment as a Tool for an Efficient Distributed Graph Transformations Coordination Investigating a Dynamic Loop Scheduling with Reinforcement Learning Approach to Load Balancing in Scientific Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1