Vadara:云应用的预测弹性

João Loff, J. Garcia
{"title":"Vadara:云应用的预测弹性","authors":"João Loff, J. Garcia","doi":"10.1109/CloudCom.2014.161","DOIUrl":null,"url":null,"abstract":"Elasticity is a key feature in cloud computing, and perhaps what distinguishes it from other computing paradigms. Despite the advantages of elasticity, realizing its full potential is hard due to multiple challenges stemming from the need to estimate workload demand. A desirable solution would require predicting system workload and allocating resources a priori, i.e., A predictive approach. Instead, what is mainly available are reactive solutions, requiring difficult parameter tuning. Since each Cloud Provider (CP) has its own implementation idiosyncrasies, it's impossible for developers to: (i) learn only about one platform and re-use that knowledge in others, (ii) migrate developed elasticity solutions between different CPs, and (iii) to develop reusable predictive elasticity rules or algorithms. This paper makes three contributions to provide an effective elasticity environment. First, Vadara, a totally generic elasticity framework, that transparently connects and abstracts several CPs API behaviour, and enables the use of pluggable CP-agnostic elasticity strategies. Second, it presents a predictive workload forecasting approach, which ensembles several individual forecasting methods, and introduces a padding system based on the most recent prediction errors for both under- and over-provisioning. Finally, results show (1) Vadara's successful connection to well-known CPs, (2) the improvements made regarding under- and over-provisioning due to our padding system, and (3) the effectiveness of our ensemble forecasting technique.","PeriodicalId":249306,"journal":{"name":"2014 IEEE 6th International Conference on Cloud Computing Technology and Science","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":"{\"title\":\"Vadara: Predictive Elasticity for Cloud Applications\",\"authors\":\"João Loff, J. Garcia\",\"doi\":\"10.1109/CloudCom.2014.161\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Elasticity is a key feature in cloud computing, and perhaps what distinguishes it from other computing paradigms. Despite the advantages of elasticity, realizing its full potential is hard due to multiple challenges stemming from the need to estimate workload demand. A desirable solution would require predicting system workload and allocating resources a priori, i.e., A predictive approach. Instead, what is mainly available are reactive solutions, requiring difficult parameter tuning. Since each Cloud Provider (CP) has its own implementation idiosyncrasies, it's impossible for developers to: (i) learn only about one platform and re-use that knowledge in others, (ii) migrate developed elasticity solutions between different CPs, and (iii) to develop reusable predictive elasticity rules or algorithms. This paper makes three contributions to provide an effective elasticity environment. First, Vadara, a totally generic elasticity framework, that transparently connects and abstracts several CPs API behaviour, and enables the use of pluggable CP-agnostic elasticity strategies. Second, it presents a predictive workload forecasting approach, which ensembles several individual forecasting methods, and introduces a padding system based on the most recent prediction errors for both under- and over-provisioning. Finally, results show (1) Vadara's successful connection to well-known CPs, (2) the improvements made regarding under- and over-provisioning due to our padding system, and (3) the effectiveness of our ensemble forecasting technique.\",\"PeriodicalId\":249306,\"journal\":{\"name\":\"2014 IEEE 6th International Conference on Cloud Computing Technology and Science\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"29\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE 6th International Conference on Cloud Computing Technology and Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CloudCom.2014.161\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 6th International Conference on Cloud Computing Technology and Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CloudCom.2014.161","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 29

摘要

弹性是云计算的一个关键特性,也许是它区别于其他计算范式的地方。尽管弹性具有优势,但由于需要估计工作负载需求而产生的多重挑战,很难充分发挥其潜力。一个理想的解决方案需要预测系统工作负载并先验地分配资源,即预测性方法。相反,主要可用的是反应性解决方案,需要进行困难的参数调优。由于每个云提供商(CP)都有自己的实现特性,因此开发人员不可能:(i)只学习一个平台并在其他平台中重用该知识,(ii)在不同的CP之间迁移开发的弹性解决方案,以及(iii)开发可重用的预测弹性规则或算法。本文为提供一个有效的弹性环境做出了三个贡献。首先,Vadara是一个完全通用的弹性框架,它透明地连接和抽象了几个CPs API行为,并支持使用可插拔的cp不可知弹性策略。其次,提出了一种预测性工作负荷预测方法,它集成了几种单独的预测方法,并引入了一个基于最近的预测误差的填充系统,用于供应不足和供应过剩。最后,结果表明(1)Vadara与知名CPs的成功连接,(2)我们的填充系统对供应不足和供应过剩的改进,以及(3)我们的集合预测技术的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Vadara: Predictive Elasticity for Cloud Applications
Elasticity is a key feature in cloud computing, and perhaps what distinguishes it from other computing paradigms. Despite the advantages of elasticity, realizing its full potential is hard due to multiple challenges stemming from the need to estimate workload demand. A desirable solution would require predicting system workload and allocating resources a priori, i.e., A predictive approach. Instead, what is mainly available are reactive solutions, requiring difficult parameter tuning. Since each Cloud Provider (CP) has its own implementation idiosyncrasies, it's impossible for developers to: (i) learn only about one platform and re-use that knowledge in others, (ii) migrate developed elasticity solutions between different CPs, and (iii) to develop reusable predictive elasticity rules or algorithms. This paper makes three contributions to provide an effective elasticity environment. First, Vadara, a totally generic elasticity framework, that transparently connects and abstracts several CPs API behaviour, and enables the use of pluggable CP-agnostic elasticity strategies. Second, it presents a predictive workload forecasting approach, which ensembles several individual forecasting methods, and introduces a padding system based on the most recent prediction errors for both under- and over-provisioning. Finally, results show (1) Vadara's successful connection to well-known CPs, (2) the improvements made regarding under- and over-provisioning due to our padding system, and (3) the effectiveness of our ensemble forecasting technique.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Exploring the Performance Impact of Virtualization on an HPC Cloud Performance Study of Spindle, A Web Analytics Query Engine Implemented in Spark Role of System Modeling for Audit of QoS Provisioning in Cloud Services Dependability Analysis on Open Stack IaaS Cloud: Bug Anaysis and Fault Injection Delegated Access for Hadoop Clusters in the Cloud
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1