基于梯度显著性测度的空间自适应正则化超分辨率图像重建

Zhenyu Liu, Jing Tian, Li Chen, Yongtao Wang
{"title":"基于梯度显著性测度的空间自适应正则化超分辨率图像重建","authors":"Zhenyu Liu, Jing Tian, Li Chen, Yongtao Wang","doi":"10.1109/ACPR.2011.6166567","DOIUrl":null,"url":null,"abstract":"This paper addresses the super-resolution image reconstruction problem with the aim to produce a higher-resolution image based on its low-resolution counterparts. The proposed approach adaptively adjusts the degree of regularization using the saliency measure of the local content of the image. This is in contrast to that a spatially-invariant regularization is used for the whole image in conventional approaches. Furthermore, a gradient-based assessment criterion is proposed to measure the saliency of the image. Experiments are conducted to demonstrate the superior performance of the proposed approach.","PeriodicalId":287232,"journal":{"name":"The First Asian Conference on Pattern Recognition","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spatially-adaptive regularized super-resolution image reconstruction using a gradient-based saliency measure\",\"authors\":\"Zhenyu Liu, Jing Tian, Li Chen, Yongtao Wang\",\"doi\":\"10.1109/ACPR.2011.6166567\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper addresses the super-resolution image reconstruction problem with the aim to produce a higher-resolution image based on its low-resolution counterparts. The proposed approach adaptively adjusts the degree of regularization using the saliency measure of the local content of the image. This is in contrast to that a spatially-invariant regularization is used for the whole image in conventional approaches. Furthermore, a gradient-based assessment criterion is proposed to measure the saliency of the image. Experiments are conducted to demonstrate the superior performance of the proposed approach.\",\"PeriodicalId\":287232,\"journal\":{\"name\":\"The First Asian Conference on Pattern Recognition\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The First Asian Conference on Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACPR.2011.6166567\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The First Asian Conference on Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACPR.2011.6166567","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文解决了超分辨率图像重建问题,目的是在低分辨率图像的基础上产生更高分辨率的图像。该方法利用图像局部内容的显著性度量自适应调整正则化程度。这与传统方法中对整个图像使用空间不变正则化形成对比。在此基础上,提出了一种基于梯度的图像显著性评价准则。实验证明了该方法的优越性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Spatially-adaptive regularized super-resolution image reconstruction using a gradient-based saliency measure
This paper addresses the super-resolution image reconstruction problem with the aim to produce a higher-resolution image based on its low-resolution counterparts. The proposed approach adaptively adjusts the degree of regularization using the saliency measure of the local content of the image. This is in contrast to that a spatially-invariant regularization is used for the whole image in conventional approaches. Furthermore, a gradient-based assessment criterion is proposed to measure the saliency of the image. Experiments are conducted to demonstrate the superior performance of the proposed approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Geolocation based image annotation Discriminant appearance weighting for action recognition Tree crown detection in high resolution optical images during the early growth stages of Eucalyptus plantations in Brazil Designing and selecting features for MR image segmentation Adaptive Patch Alignment Based Local Binary Patterns for face recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1