原始与处理:如何使用原始和处理图像鲁棒人脸识别在不同的照明

Li Xu, Lei Huang, Chang-ping Liu
{"title":"原始与处理:如何使用原始和处理图像鲁棒人脸识别在不同的照明","authors":"Li Xu, Lei Huang, Chang-ping Liu","doi":"10.1109/ICPR.2010.660","DOIUrl":null,"url":null,"abstract":"Many previous image processing methods discard low-frequency components of images to extract illumination invariant for face recognition. However, this method may cause distortion of processed images and perform poorly under normal lighting. In this paper, a new method is proposed to deal with illumination problem in face recognition. Firstly, we define a score to denote a relative difference of the first and second largest similarities between the query input and the individuals in the gallery classes. Then, according to the score, we choose the appropriate images, raw or processed images, to involve the recognition. The experiment in ORL, CMU-PIE and Extended Yale B face databases shows that our adaptive method give more robust result after combination and perform better than the traditional fusion operators, the sum and the maximum of similarities.","PeriodicalId":309591,"journal":{"name":"2010 20th International Conference on Pattern Recognition","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2010-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Raw vs. Processed: How to Use the Raw and Processed Images for Robust Face Recognition under Varying Illumination\",\"authors\":\"Li Xu, Lei Huang, Chang-ping Liu\",\"doi\":\"10.1109/ICPR.2010.660\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many previous image processing methods discard low-frequency components of images to extract illumination invariant for face recognition. However, this method may cause distortion of processed images and perform poorly under normal lighting. In this paper, a new method is proposed to deal with illumination problem in face recognition. Firstly, we define a score to denote a relative difference of the first and second largest similarities between the query input and the individuals in the gallery classes. Then, according to the score, we choose the appropriate images, raw or processed images, to involve the recognition. The experiment in ORL, CMU-PIE and Extended Yale B face databases shows that our adaptive method give more robust result after combination and perform better than the traditional fusion operators, the sum and the maximum of similarities.\",\"PeriodicalId\":309591,\"journal\":{\"name\":\"2010 20th International Conference on Pattern Recognition\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 20th International Conference on Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPR.2010.660\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 20th International Conference on Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPR.2010.660","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

以往的许多图像处理方法都是丢弃图像的低频分量,提取光照不变量来进行人脸识别。然而,这种方法可能会导致处理后的图像失真,并且在正常照明下表现不佳。本文提出了一种处理人脸识别中光照问题的新方法。首先,我们定义一个分数来表示查询输入与图库类中的个体之间的第一大和第二大相似性的相对差异。然后,根据分数,我们选择合适的图像,无论是原始图像还是处理过的图像,进行识别。在ORL、CMU-PIE和Extended Yale B人脸数据库中进行的实验表明,该方法组合后具有更强的鲁棒性,并且优于传统的融合算子、相似度和和最大值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Raw vs. Processed: How to Use the Raw and Processed Images for Robust Face Recognition under Varying Illumination
Many previous image processing methods discard low-frequency components of images to extract illumination invariant for face recognition. However, this method may cause distortion of processed images and perform poorly under normal lighting. In this paper, a new method is proposed to deal with illumination problem in face recognition. Firstly, we define a score to denote a relative difference of the first and second largest similarities between the query input and the individuals in the gallery classes. Then, according to the score, we choose the appropriate images, raw or processed images, to involve the recognition. The experiment in ORL, CMU-PIE and Extended Yale B face databases shows that our adaptive method give more robust result after combination and perform better than the traditional fusion operators, the sum and the maximum of similarities.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Comprehensive Evaluation on Non-deterministic Motion Estimation Coarse Scale Feature Extraction Using the Spiral Architecture Structure Research the Performance of a Recursive Algorithm of the Local Discrete Wavelet Transform Underwater Mine Classification with Imperfect Labels Scribe Identification in Medieval English Manuscripts
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1