如何在不同的理解水平上评估数据可视化

Alyxander Burns, Cindy Xiong, S. Franconeri, A. Cairo, Narges Mahyar
{"title":"如何在不同的理解水平上评估数据可视化","authors":"Alyxander Burns, Cindy Xiong, S. Franconeri, A. Cairo, Narges Mahyar","doi":"10.1109/BELIV51497.2020.00010","DOIUrl":null,"url":null,"abstract":"Understanding a visualization is a multi-level process. A reader must extract and extrapolate from numeric facts, understand how those facts apply to both the context of the data and other potential contexts, and draw or evaluate conclusions from the data. A well-designed visualization should support each of these levels of understanding. We diagnose levels of understanding of visualized data by adapting Bloom’s taxonomy, a common framework from the education literature. We describe each level of the framework and provide examples for how it can be applied to evaluate the efficacy of data visualizations along six levels of knowledge acquisition - knowledge, comprehension, application, analysis, synthesis, and evaluation. We present three case studies showing that this framework expands on existing methods to comprehensively measure how a visualization design facilitates a viewer’s understanding of visualizations. Although Bloom’s original taxonomy suggests a strong hierarchical structure for some domains, we found few examples of dependent relationships between performance at different levels for our three case studies. If this level-independence holds across new tested visualizations, the taxonomy could serve to inspire more targeted evaluations of levels of understanding that are relevant to a communication goal.","PeriodicalId":282674,"journal":{"name":"2020 IEEE Workshop on Evaluation and Beyond - Methodological Approaches to Visualization (BELIV)","volume":"177 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":"{\"title\":\"How to evaluate data visualizations across different levels of understanding\",\"authors\":\"Alyxander Burns, Cindy Xiong, S. Franconeri, A. Cairo, Narges Mahyar\",\"doi\":\"10.1109/BELIV51497.2020.00010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Understanding a visualization is a multi-level process. A reader must extract and extrapolate from numeric facts, understand how those facts apply to both the context of the data and other potential contexts, and draw or evaluate conclusions from the data. A well-designed visualization should support each of these levels of understanding. We diagnose levels of understanding of visualized data by adapting Bloom’s taxonomy, a common framework from the education literature. We describe each level of the framework and provide examples for how it can be applied to evaluate the efficacy of data visualizations along six levels of knowledge acquisition - knowledge, comprehension, application, analysis, synthesis, and evaluation. We present three case studies showing that this framework expands on existing methods to comprehensively measure how a visualization design facilitates a viewer’s understanding of visualizations. Although Bloom’s original taxonomy suggests a strong hierarchical structure for some domains, we found few examples of dependent relationships between performance at different levels for our three case studies. If this level-independence holds across new tested visualizations, the taxonomy could serve to inspire more targeted evaluations of levels of understanding that are relevant to a communication goal.\",\"PeriodicalId\":282674,\"journal\":{\"name\":\"2020 IEEE Workshop on Evaluation and Beyond - Methodological Approaches to Visualization (BELIV)\",\"volume\":\"177 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE Workshop on Evaluation and Beyond - Methodological Approaches to Visualization (BELIV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BELIV51497.2020.00010\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Workshop on Evaluation and Beyond - Methodological Approaches to Visualization (BELIV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BELIV51497.2020.00010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

摘要

理解可视化是一个多层次的过程。读者必须从数字事实中提取和推断,理解这些事实如何应用于数据的上下文和其他潜在的上下文,并从数据中得出或评估结论。一个设计良好的可视化应该支持每一个层次的理解。我们通过调整Bloom的分类法(一种来自教育文献的通用框架)来诊断对可视化数据的理解水平。我们描述了框架的每个层次,并提供了如何应用它来评估数据可视化的功效的示例,这些知识获取分为六个层次:知识、理解、应用、分析、综合和评估。我们提出了三个案例研究,表明该框架扩展了现有的方法,以全面衡量可视化设计如何促进观看者对可视化的理解。尽管Bloom的原始分类法表明某些领域有很强的层次结构,但在我们的三个案例研究中,我们发现很少有不同级别的性能之间存在依赖关系的例子。如果这种级别独立性在经过测试的新可视化中都成立,那么分类法就可以激发对与通信目标相关的理解级别进行更有针对性的评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
How to evaluate data visualizations across different levels of understanding
Understanding a visualization is a multi-level process. A reader must extract and extrapolate from numeric facts, understand how those facts apply to both the context of the data and other potential contexts, and draw or evaluate conclusions from the data. A well-designed visualization should support each of these levels of understanding. We diagnose levels of understanding of visualized data by adapting Bloom’s taxonomy, a common framework from the education literature. We describe each level of the framework and provide examples for how it can be applied to evaluate the efficacy of data visualizations along six levels of knowledge acquisition - knowledge, comprehension, application, analysis, synthesis, and evaluation. We present three case studies showing that this framework expands on existing methods to comprehensively measure how a visualization design facilitates a viewer’s understanding of visualizations. Although Bloom’s original taxonomy suggests a strong hierarchical structure for some domains, we found few examples of dependent relationships between performance at different levels for our three case studies. If this level-independence holds across new tested visualizations, the taxonomy could serve to inspire more targeted evaluations of levels of understanding that are relevant to a communication goal.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Extending Recommendations for Creative Visualization-Opportunities Workshops BELIV 2020 Committees [Title page iii] [Copyright notice] BELIV 2020 Preface
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1