联合实验室、野外和航空光谱数据库用于土壤碳氢化合物含量的量化

V. Lever, P. Foucher, X. Briottet, D. Dubucq, R. Oltra-Carrió, L. Poutier, V. Achard, P. Déliot
{"title":"联合实验室、野外和航空光谱数据库用于土壤碳氢化合物含量的量化","authors":"V. Lever, P. Foucher, X. Briottet, D. Dubucq, R. Oltra-Carrió, L. Poutier, V. Achard, P. Déliot","doi":"10.1109/WHISPERS.2016.8071728","DOIUrl":null,"url":null,"abstract":"Soil-hydrocarbon mixtures give complex spectral responses. This has prohibited any physical modelling until now. Spectral analysis and quantification of contamination rate has been performed by regression models, calibrated on spectral databases. Only lab or field databases have been used. This study proposes an innovative joint lab-field-airborne spectral database in the reflective domain (0.4–2.5/xm) to assess the performance of regression models on airborne images of soil-hydrocarbon mixtures. Sample preparation and spectral measurements are described. Implied instruments are an ASD FieldSpec Pro 2 spectrometer and the HySpex hyperspectral camera. Accordance between ground truth and airborne data is shown. Several raw outdoor spectra are displayed.","PeriodicalId":369281,"journal":{"name":"2016 8th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS)","volume":"114 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Joint lab, field and airborne spectral database for the quantification of soil hydrocarbon content\",\"authors\":\"V. Lever, P. Foucher, X. Briottet, D. Dubucq, R. Oltra-Carrió, L. Poutier, V. Achard, P. Déliot\",\"doi\":\"10.1109/WHISPERS.2016.8071728\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Soil-hydrocarbon mixtures give complex spectral responses. This has prohibited any physical modelling until now. Spectral analysis and quantification of contamination rate has been performed by regression models, calibrated on spectral databases. Only lab or field databases have been used. This study proposes an innovative joint lab-field-airborne spectral database in the reflective domain (0.4–2.5/xm) to assess the performance of regression models on airborne images of soil-hydrocarbon mixtures. Sample preparation and spectral measurements are described. Implied instruments are an ASD FieldSpec Pro 2 spectrometer and the HySpex hyperspectral camera. Accordance between ground truth and airborne data is shown. Several raw outdoor spectra are displayed.\",\"PeriodicalId\":369281,\"journal\":{\"name\":\"2016 8th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS)\",\"volume\":\"114 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 8th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WHISPERS.2016.8071728\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 8th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WHISPERS.2016.8071728","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

土壤-碳氢化合物混合物具有复杂的光谱响应。到目前为止,这已经禁止了任何物理模型。光谱分析和污染率的量化是通过回归模型进行的,并在光谱数据库上进行校准。仅使用了实验室或现场数据库。本研究提出了一个创新的反射域(0.4-2.5 /xm)联合实验室-现场-航空光谱数据库,以评估回归模型对土壤-碳氢化合物混合物航空图像的性能。描述了样品制备和光谱测量。隐含的仪器是ASD FieldSpec Pro 2光谱仪和HySpex高光谱相机。显示了地面真实值与航空数据的一致性。显示了几个原始的室外光谱。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Joint lab, field and airborne spectral database for the quantification of soil hydrocarbon content
Soil-hydrocarbon mixtures give complex spectral responses. This has prohibited any physical modelling until now. Spectral analysis and quantification of contamination rate has been performed by regression models, calibrated on spectral databases. Only lab or field databases have been used. This study proposes an innovative joint lab-field-airborne spectral database in the reflective domain (0.4–2.5/xm) to assess the performance of regression models on airborne images of soil-hydrocarbon mixtures. Sample preparation and spectral measurements are described. Implied instruments are an ASD FieldSpec Pro 2 spectrometer and the HySpex hyperspectral camera. Accordance between ground truth and airborne data is shown. Several raw outdoor spectra are displayed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Hyperspectral and color-infrared imaging from ultralight aircraft: Potential to recognize tree species in urban environments Mapping land covers of brussels capital region using spatially enhanced hyperspectral images Morpho-spectral objects classification by hyperspectral airborne imagery Land-cover monitoring using time-series hyperspectral data via fractional-order darwinian particle swarm optimization segmentation Nonnegative CP decomposition of multiangle hyperspectral data: A case study on CRISM observations of Martian ICY surface
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1