基于计算机仿真的树脂注射拉挤工艺设计

Zhongman Ding, Shoujie Li, L. J. Lee, Herbert Engelen
{"title":"基于计算机仿真的树脂注射拉挤工艺设计","authors":"Zhongman Ding, Shoujie Li, L. J. Lee, Herbert Engelen","doi":"10.1115/imece2000-1236","DOIUrl":null,"url":null,"abstract":"\n Resin Injection Pultrusion (RIP) is a new composite manufacturing process, which combines the advantages of the conventional pultrusion process and the Resin Transfer Molding (RTM) process. It is sometimes referred to the Continuous Resin Transfer Molding (C-RTM) process. The RIP process differs from the conventional pultrusion process in that the resin is injected into an injection-die (instead of being placed in an open bath) in order to eliminate the emission of volatile organic compounds (styrene) (VOC) during processing. Based on the modeling and simulation of resin/fiber “pultrudability”, resin flow, and heat transfer and curing, a computer aided engineering tool has been developed for the purpose of process design. In this study, the fiber stack permeability and compressibility are measured and modeled, and the resin impregnation pattern and pressure distribution inside the fiber stack are obtained using numerical simulation. Conversion profiles in die heating section of the pultrusion die can also be obtained using the simulation tool. The correlation between the degree-of-cure profiles and the occurrence of blisters in the pultruded composite parts is discussed. Pulling force modeling and analysis are carried out to identify the effect on composite quality due to interface friction between the die surface and the moving resin/fiber mixture. Experimental data are used to verify the modeling and simulation results.","PeriodicalId":198750,"journal":{"name":"CAE and Related Innovations for Polymer Processing","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Using Computer Simulation as a Process Design Tool for Resin Injection Pultrusion (RIP)\",\"authors\":\"Zhongman Ding, Shoujie Li, L. J. Lee, Herbert Engelen\",\"doi\":\"10.1115/imece2000-1236\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Resin Injection Pultrusion (RIP) is a new composite manufacturing process, which combines the advantages of the conventional pultrusion process and the Resin Transfer Molding (RTM) process. It is sometimes referred to the Continuous Resin Transfer Molding (C-RTM) process. The RIP process differs from the conventional pultrusion process in that the resin is injected into an injection-die (instead of being placed in an open bath) in order to eliminate the emission of volatile organic compounds (styrene) (VOC) during processing. Based on the modeling and simulation of resin/fiber “pultrudability”, resin flow, and heat transfer and curing, a computer aided engineering tool has been developed for the purpose of process design. In this study, the fiber stack permeability and compressibility are measured and modeled, and the resin impregnation pattern and pressure distribution inside the fiber stack are obtained using numerical simulation. Conversion profiles in die heating section of the pultrusion die can also be obtained using the simulation tool. The correlation between the degree-of-cure profiles and the occurrence of blisters in the pultruded composite parts is discussed. Pulling force modeling and analysis are carried out to identify the effect on composite quality due to interface friction between the die surface and the moving resin/fiber mixture. Experimental data are used to verify the modeling and simulation results.\",\"PeriodicalId\":198750,\"journal\":{\"name\":\"CAE and Related Innovations for Polymer Processing\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CAE and Related Innovations for Polymer Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/imece2000-1236\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CAE and Related Innovations for Polymer Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/imece2000-1236","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

树脂注射拉挤(RIP)是一种新型复合材料制造工艺,它结合了传统拉挤工艺和树脂传递成型(RTM)工艺的优点。它有时被称为连续树脂传递成型(C-RTM)工艺。RIP工艺与传统的拉挤工艺的不同之处在于,树脂被注射到注射模具中(而不是放在露天槽中),以消除加工过程中挥发性有机化合物(苯乙烯)(VOC)的排放。基于树脂/纤维“可拉伸性”、树脂流动、传热和固化的建模和仿真,开发了一种用于工艺设计的计算机辅助工程工具。本文对纤维堆的渗透性和压缩性进行了测量和建模,并通过数值模拟得到了纤维堆内部的树脂浸渍规律和压力分布。利用该仿真工具还可以得到拉挤模加热段的转换轮廓。讨论了固化度曲线与复合材料挤压件起泡发生的关系。为了确定模具表面与移动的树脂/纤维混合物之间的界面摩擦对复合材料质量的影响,进行了拉力建模和分析。用实验数据验证了建模和仿真结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Using Computer Simulation as a Process Design Tool for Resin Injection Pultrusion (RIP)
Resin Injection Pultrusion (RIP) is a new composite manufacturing process, which combines the advantages of the conventional pultrusion process and the Resin Transfer Molding (RTM) process. It is sometimes referred to the Continuous Resin Transfer Molding (C-RTM) process. The RIP process differs from the conventional pultrusion process in that the resin is injected into an injection-die (instead of being placed in an open bath) in order to eliminate the emission of volatile organic compounds (styrene) (VOC) during processing. Based on the modeling and simulation of resin/fiber “pultrudability”, resin flow, and heat transfer and curing, a computer aided engineering tool has been developed for the purpose of process design. In this study, the fiber stack permeability and compressibility are measured and modeled, and the resin impregnation pattern and pressure distribution inside the fiber stack are obtained using numerical simulation. Conversion profiles in die heating section of the pultrusion die can also be obtained using the simulation tool. The correlation between the degree-of-cure profiles and the occurrence of blisters in the pultruded composite parts is discussed. Pulling force modeling and analysis are carried out to identify the effect on composite quality due to interface friction between the die surface and the moving resin/fiber mixture. Experimental data are used to verify the modeling and simulation results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Numerical Solution of the Inverse Problem for Thermoforming Processes Using Finite Element Analysis Identification of Preform Permeability Distribution in Resin Transfer Molding Runner System Design Optimization for Multigated and Multicavity Injection Molds Gate Location Optimization in Injection Molding Processing A New Technique for Characterizing the Transient Rheological Response of Polymer Melt at High Shear Rates
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1