监控网络监控系统:利用模式识别进行异常检测

Maha Mdini, Alberto Blanc, G. Simon, Jerome Barotin, Julien Lecoeuvre
{"title":"监控网络监控系统:利用模式识别进行异常检测","authors":"Maha Mdini, Alberto Blanc, G. Simon, Jerome Barotin, Julien Lecoeuvre","doi":"10.23919/INM.2017.7987418","DOIUrl":null,"url":null,"abstract":"For a successful and efficient network supervision, an Anomaly Detection System is essential. In this paper, our goal is to develop a simple, practical, and application-domain specific approach to identify anomalies in the input/output data of network probes. Since data are periodic and continuously evolving, it is not possible to use threshold-based approaches. We propose an algorithm based on pattern recognition to help mobile operators detect anomalies in real time. The algorithm is unsupervised and easily configurable with a small number of tuning parameters. After weeks of deployment in a production network monitoring system, we obtain satisfactory results: we detect major anomalies with low error rate.","PeriodicalId":119633,"journal":{"name":"2017 IFIP/IEEE Symposium on Integrated Network and Service Management (IM)","volume":"393 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Monitoring the network monitoring system: Anomaly Detection using pattern recognition\",\"authors\":\"Maha Mdini, Alberto Blanc, G. Simon, Jerome Barotin, Julien Lecoeuvre\",\"doi\":\"10.23919/INM.2017.7987418\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For a successful and efficient network supervision, an Anomaly Detection System is essential. In this paper, our goal is to develop a simple, practical, and application-domain specific approach to identify anomalies in the input/output data of network probes. Since data are periodic and continuously evolving, it is not possible to use threshold-based approaches. We propose an algorithm based on pattern recognition to help mobile operators detect anomalies in real time. The algorithm is unsupervised and easily configurable with a small number of tuning parameters. After weeks of deployment in a production network monitoring system, we obtain satisfactory results: we detect major anomalies with low error rate.\",\"PeriodicalId\":119633,\"journal\":{\"name\":\"2017 IFIP/IEEE Symposium on Integrated Network and Service Management (IM)\",\"volume\":\"393 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IFIP/IEEE Symposium on Integrated Network and Service Management (IM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/INM.2017.7987418\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IFIP/IEEE Symposium on Integrated Network and Service Management (IM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/INM.2017.7987418","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

异常检测系统是一个成功、高效的网络监控系统。在本文中,我们的目标是开发一种简单、实用和特定于应用领域的方法来识别网络探针输入/输出数据中的异常。由于数据是周期性和不断发展的,因此不可能使用基于阈值的方法。我们提出了一种基于模式识别的算法来帮助移动运营商实时检测异常。该算法是无监督的,并且易于配置,只需少量的调优参数。经过数周的生产网络监控系统部署,我们获得了令人满意的结果:我们以低错误率检测到重大异常。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Monitoring the network monitoring system: Anomaly Detection using pattern recognition
For a successful and efficient network supervision, an Anomaly Detection System is essential. In this paper, our goal is to develop a simple, practical, and application-domain specific approach to identify anomalies in the input/output data of network probes. Since data are periodic and continuously evolving, it is not possible to use threshold-based approaches. We propose an algorithm based on pattern recognition to help mobile operators detect anomalies in real time. The algorithm is unsupervised and easily configurable with a small number of tuning parameters. After weeks of deployment in a production network monitoring system, we obtain satisfactory results: we detect major anomalies with low error rate.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A graph-based representation of relations in network security alert sharing platforms Network defence strategy evaluation: Simulation vs. live network Exchanging security events: Which and how many alerts can we aggregate? Honeypot testbed for network defence strategy evaluation SDQ: Enabling rapid QoE experimentation using Software Defined Networking
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1