克拉2气田水侵主控因素分析

Zhao-long Liu, Yongzhong Zhang
{"title":"克拉2气田水侵主控因素分析","authors":"Zhao-long Liu, Yongzhong Zhang","doi":"10.2523/iptc-23041-ea","DOIUrl":null,"url":null,"abstract":"\n As one of the largest discovered gas fields in China, Kela 2 gas field has proven geological reserves of more than 200 billion cubic meters, with a maximum annual gas production of approximately 12 billion cubic meters. After 18 years development, Kela 2 gas field is now in the middle-late development period. At present, the gas field has experienced many development challenges, among which early water flooding and inhomogeneous water invasion are the main reasons for the production decline in Kela 2 gas field. Based on the abundant geological and performance data, a fine 3D geological modeling is built to accurately describe the structure, matrix properties and fracture in Kela 2 gas field, and then analyzes the characteristics and causes of water invasion. The research shows that faults, fractures, high permeability zone and interlayer are the main controlling factors of water invasion in Kela 2 gas field. And the water invasion can be divided into three patterns, (a) Vertical channeling-lateral invasion, (b) Edge water lateral invasion, (c) Bottom water coning. On the basis of water invasion study, development countermeasures are put forward to provide support for long-term stable production and efficient development of Kela 2 gas field.","PeriodicalId":283978,"journal":{"name":"Day 1 Wed, March 01, 2023","volume":"201 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Main Controlling Factors of Water Invasion for Kela 2 Gas Field\",\"authors\":\"Zhao-long Liu, Yongzhong Zhang\",\"doi\":\"10.2523/iptc-23041-ea\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n As one of the largest discovered gas fields in China, Kela 2 gas field has proven geological reserves of more than 200 billion cubic meters, with a maximum annual gas production of approximately 12 billion cubic meters. After 18 years development, Kela 2 gas field is now in the middle-late development period. At present, the gas field has experienced many development challenges, among which early water flooding and inhomogeneous water invasion are the main reasons for the production decline in Kela 2 gas field. Based on the abundant geological and performance data, a fine 3D geological modeling is built to accurately describe the structure, matrix properties and fracture in Kela 2 gas field, and then analyzes the characteristics and causes of water invasion. The research shows that faults, fractures, high permeability zone and interlayer are the main controlling factors of water invasion in Kela 2 gas field. And the water invasion can be divided into three patterns, (a) Vertical channeling-lateral invasion, (b) Edge water lateral invasion, (c) Bottom water coning. On the basis of water invasion study, development countermeasures are put forward to provide support for long-term stable production and efficient development of Kela 2 gas field.\",\"PeriodicalId\":283978,\"journal\":{\"name\":\"Day 1 Wed, March 01, 2023\",\"volume\":\"201 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 1 Wed, March 01, 2023\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2523/iptc-23041-ea\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 1 Wed, March 01, 2023","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2523/iptc-23041-ea","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

克拉2号气田是中国已发现的最大气田之一,探明地质储量超过2000亿立方米,年最大产气量约120亿立方米。克拉2气田经过18年的开发,目前已进入中后期开发阶段。目前,克拉2气田开发面临诸多挑战,其中早期水驱和不均匀水侵是导致克拉2气田产量下降的主要原因。基于丰富的地质和动态资料,建立精细的三维地质模型,准确描述克拉2气田的构造、基质性质和裂缝,分析水侵特征及成因。研究表明,断裂、裂缝、高渗透带和层间是克拉2气田水侵的主要控制因素。水侵可分为3种模式,即(a)垂直通道侧侵,(b)边水侧侵,(c)底水锥入。在水侵研究的基础上,提出了开发对策,为克拉2气田长期稳定生产、高效开发提供支撑。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Main Controlling Factors of Water Invasion for Kela 2 Gas Field
As one of the largest discovered gas fields in China, Kela 2 gas field has proven geological reserves of more than 200 billion cubic meters, with a maximum annual gas production of approximately 12 billion cubic meters. After 18 years development, Kela 2 gas field is now in the middle-late development period. At present, the gas field has experienced many development challenges, among which early water flooding and inhomogeneous water invasion are the main reasons for the production decline in Kela 2 gas field. Based on the abundant geological and performance data, a fine 3D geological modeling is built to accurately describe the structure, matrix properties and fracture in Kela 2 gas field, and then analyzes the characteristics and causes of water invasion. The research shows that faults, fractures, high permeability zone and interlayer are the main controlling factors of water invasion in Kela 2 gas field. And the water invasion can be divided into three patterns, (a) Vertical channeling-lateral invasion, (b) Edge water lateral invasion, (c) Bottom water coning. On the basis of water invasion study, development countermeasures are put forward to provide support for long-term stable production and efficient development of Kela 2 gas field.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Proper Well Spacings – A Supplementary Method to Maximize The Gulf of Thailand Development Project Value Seismic Driven Machine Learning to Improve Precision and Accelerate Screening Shallow Gas Potentials in Tunu Shallow Gas Zone, Mahakam Delta, Indonesia Rejuvenating Waterflood Reservoir in a Complex Geological Setting of a Matured Brown Field Intelligent Prediction of Downhole Drillstring Vibrations in Horizontal Wells by Employing Artificial Neural Network Sand Fill Clean-Out on Wireline Enables Access to Additional Perforation Zones in Gas Well Producer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1