K. A. Cheminant, D. G'ora, N. Borodai, R. Engel, T. Pierog, J. Pkekala, M. Roth, J. Stasielak, M. Unger, D. Veberivc, Henryk Wilczy'nski Institute of Nuclear Physics Pas, Karlsruhe Institute of Technology Institute for Astroparticl Physics
{"title":"μ子赤字问题:一种计算μ子重标度因子和Heitler-Matthew β指数的新方法","authors":"K. A. Cheminant, D. G'ora, N. Borodai, R. Engel, T. Pierog, J. Pkekala, M. Roth, J. Stasielak, M. Unger, D. Veberivc, Henryk Wilczy'nski Institute of Nuclear Physics Pas, Karlsruhe Institute of Technology Institute for Astroparticl Physics","doi":"10.22323/1.423.0070","DOIUrl":null,"url":null,"abstract":"Simulations of extensive air showers using current hadronic interaction models predict too small numbers of muons compared to events observed in the air-shower experiments, which is known as the muon-deficit problem. In this work, we present a new method to calculate the factor by which the muon signal obtained via Monte-Carlo simulations must be rescaled to match the data, as well as the beta exponent from the Heitler-Matthews model which governs the number of muons found in an extensive air shower as a function of the mass and the energy of the primary cosmic ray. This method uses the so-called z variable (difference between the total reconstructed and the simulated signals), which is connected to the muon signal and is roughly independent of the zenith angle, but depends on the mass of the primary cosmic ray. Using a mock dataset built from QGSJetII-04, we show that such a method allows us to reproduce the average muon signal from this dataset using Monte-Carlo events generated with the EPOS-LHC hadronic model, with accuracy better than 6%. As a consequence of the good recovery of the muon signal for each primary included in the analysis, also the beta exponent can be obtained with accuracy of less than 1% for the studied system. Detailed simulations show a dependence of the beta exponent on hadronic interaction properties, thus the determination of this parameter is important for understanding the muon deficit problem.","PeriodicalId":375543,"journal":{"name":"Proceedings of 27th European Cosmic Ray Symposium — PoS(ECRS)","volume":"90 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The muon deficit problem: a new method to calculate the muon rescaling factors and the Heitler-Matthew’s β-exponent\",\"authors\":\"K. A. Cheminant, D. G'ora, N. Borodai, R. Engel, T. Pierog, J. Pkekala, M. Roth, J. Stasielak, M. Unger, D. Veberivc, Henryk Wilczy'nski Institute of Nuclear Physics Pas, Karlsruhe Institute of Technology Institute for Astroparticl Physics\",\"doi\":\"10.22323/1.423.0070\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Simulations of extensive air showers using current hadronic interaction models predict too small numbers of muons compared to events observed in the air-shower experiments, which is known as the muon-deficit problem. In this work, we present a new method to calculate the factor by which the muon signal obtained via Monte-Carlo simulations must be rescaled to match the data, as well as the beta exponent from the Heitler-Matthews model which governs the number of muons found in an extensive air shower as a function of the mass and the energy of the primary cosmic ray. This method uses the so-called z variable (difference between the total reconstructed and the simulated signals), which is connected to the muon signal and is roughly independent of the zenith angle, but depends on the mass of the primary cosmic ray. Using a mock dataset built from QGSJetII-04, we show that such a method allows us to reproduce the average muon signal from this dataset using Monte-Carlo events generated with the EPOS-LHC hadronic model, with accuracy better than 6%. As a consequence of the good recovery of the muon signal for each primary included in the analysis, also the beta exponent can be obtained with accuracy of less than 1% for the studied system. Detailed simulations show a dependence of the beta exponent on hadronic interaction properties, thus the determination of this parameter is important for understanding the muon deficit problem.\",\"PeriodicalId\":375543,\"journal\":{\"name\":\"Proceedings of 27th European Cosmic Ray Symposium — PoS(ECRS)\",\"volume\":\"90 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 27th European Cosmic Ray Symposium — PoS(ECRS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22323/1.423.0070\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 27th European Cosmic Ray Symposium — PoS(ECRS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22323/1.423.0070","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The muon deficit problem: a new method to calculate the muon rescaling factors and the Heitler-Matthew’s β-exponent
Simulations of extensive air showers using current hadronic interaction models predict too small numbers of muons compared to events observed in the air-shower experiments, which is known as the muon-deficit problem. In this work, we present a new method to calculate the factor by which the muon signal obtained via Monte-Carlo simulations must be rescaled to match the data, as well as the beta exponent from the Heitler-Matthews model which governs the number of muons found in an extensive air shower as a function of the mass and the energy of the primary cosmic ray. This method uses the so-called z variable (difference between the total reconstructed and the simulated signals), which is connected to the muon signal and is roughly independent of the zenith angle, but depends on the mass of the primary cosmic ray. Using a mock dataset built from QGSJetII-04, we show that such a method allows us to reproduce the average muon signal from this dataset using Monte-Carlo events generated with the EPOS-LHC hadronic model, with accuracy better than 6%. As a consequence of the good recovery of the muon signal for each primary included in the analysis, also the beta exponent can be obtained with accuracy of less than 1% for the studied system. Detailed simulations show a dependence of the beta exponent on hadronic interaction properties, thus the determination of this parameter is important for understanding the muon deficit problem.