{"title":"平面上的双曲距离与准双曲距离","authors":"D. Herron, Jeff Lindquist","doi":"10.1090/btran/73","DOIUrl":null,"url":null,"abstract":"We examine Euclidean plane domains with their hyperbolic or quasihyperbolic distance. We prove that the associated metric spaces are quasisymmetrically equivalent if and only if they are bi-Lipschitz equivalent. On the other hand, for Gromov hyperbolic domains, the two corresponding Gromov boundaries are always quasisymmetrically equivalent. Surprisingly, for any finitely connected hyperbolic domain, these two metric spaces are always quasiisometrically equivalent. We construct examples where the spaces are not quasiisometrically equivalent.","PeriodicalId":377306,"journal":{"name":"Transactions of the American Mathematical Society, Series B","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Hyperbolic distance versus quasihyperbolic distance in plane domains\",\"authors\":\"D. Herron, Jeff Lindquist\",\"doi\":\"10.1090/btran/73\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We examine Euclidean plane domains with their hyperbolic or quasihyperbolic distance. We prove that the associated metric spaces are quasisymmetrically equivalent if and only if they are bi-Lipschitz equivalent. On the other hand, for Gromov hyperbolic domains, the two corresponding Gromov boundaries are always quasisymmetrically equivalent. Surprisingly, for any finitely connected hyperbolic domain, these two metric spaces are always quasiisometrically equivalent. We construct examples where the spaces are not quasiisometrically equivalent.\",\"PeriodicalId\":377306,\"journal\":{\"name\":\"Transactions of the American Mathematical Society, Series B\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions of the American Mathematical Society, Series B\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/btran/73\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the American Mathematical Society, Series B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/btran/73","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Hyperbolic distance versus quasihyperbolic distance in plane domains
We examine Euclidean plane domains with their hyperbolic or quasihyperbolic distance. We prove that the associated metric spaces are quasisymmetrically equivalent if and only if they are bi-Lipschitz equivalent. On the other hand, for Gromov hyperbolic domains, the two corresponding Gromov boundaries are always quasisymmetrically equivalent. Surprisingly, for any finitely connected hyperbolic domain, these two metric spaces are always quasiisometrically equivalent. We construct examples where the spaces are not quasiisometrically equivalent.