基于相似度分析的监控视频帧间伪造检测技术

Anas Abdullahi, M. Bagiwa, A. Roko, Samaila Buda
{"title":"基于相似度分析的监控视频帧间伪造检测技术","authors":"Anas Abdullahi, M. Bagiwa, A. Roko, Samaila Buda","doi":"10.56471/slujst.v4i.265","DOIUrl":null,"url":null,"abstract":"Background: In video forgeries, the insertion, duplication and deletion of frames are the most common forgeries that are used by attackers to alter targeted videos for malicious intent. Researchers have proposed the use of active and passive technologies for detecting video forgeries over the years. Active approaches are used to detect the occurrence of alterations in digital video with the use of embedded features such as digital signature and watermarks. However, techniques that are based on active approaches are only applicable to specialized hardware devices. A passive technique, on the other hand, detects forgery using the behavioral cues encoded in a video. In this paper, a passive video forgery detection system based on frame similarity analysis is presented.Inter frame forgeries (Insertion, Deletion, and Duplication) were detected using the proposed technique, which was unaffected by scene changes.The technique has the overall performance of 98.07% precision, 100% recall and 99.01% accuracy.","PeriodicalId":299818,"journal":{"name":"SLU Journal of Science and Technology","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"An Inter-Frame Forgery Detection Technique for Surveillance Videos Based on Analysis of Similarities\",\"authors\":\"Anas Abdullahi, M. Bagiwa, A. Roko, Samaila Buda\",\"doi\":\"10.56471/slujst.v4i.265\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Background: In video forgeries, the insertion, duplication and deletion of frames are the most common forgeries that are used by attackers to alter targeted videos for malicious intent. Researchers have proposed the use of active and passive technologies for detecting video forgeries over the years. Active approaches are used to detect the occurrence of alterations in digital video with the use of embedded features such as digital signature and watermarks. However, techniques that are based on active approaches are only applicable to specialized hardware devices. A passive technique, on the other hand, detects forgery using the behavioral cues encoded in a video. In this paper, a passive video forgery detection system based on frame similarity analysis is presented.Inter frame forgeries (Insertion, Deletion, and Duplication) were detected using the proposed technique, which was unaffected by scene changes.The technique has the overall performance of 98.07% precision, 100% recall and 99.01% accuracy.\",\"PeriodicalId\":299818,\"journal\":{\"name\":\"SLU Journal of Science and Technology\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SLU Journal of Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.56471/slujst.v4i.265\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SLU Journal of Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.56471/slujst.v4i.265","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

背景:在视频伪造中,帧的插入、复制和删除是最常见的伪造,攻击者使用它来改变目标视频以达到恶意目的。多年来,研究人员已经提出使用主动和被动技术来检测视频伪造。利用数字签名和水印等嵌入式特征,主动方法被用来检测数字视频中变化的发生。然而,基于主动方法的技术只适用于专门的硬件设备。另一方面,被动技术是利用视频中编码的行为线索来检测伪造。本文提出了一种基于帧相似度分析的被动视频伪造检测系统。使用该技术检测帧间伪造(插入、删除和复制),该技术不受场景变化的影响。该技术的总体精度为98.07%,召回率为100%,准确率为99.01%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An Inter-Frame Forgery Detection Technique for Surveillance Videos Based on Analysis of Similarities
Background: In video forgeries, the insertion, duplication and deletion of frames are the most common forgeries that are used by attackers to alter targeted videos for malicious intent. Researchers have proposed the use of active and passive technologies for detecting video forgeries over the years. Active approaches are used to detect the occurrence of alterations in digital video with the use of embedded features such as digital signature and watermarks. However, techniques that are based on active approaches are only applicable to specialized hardware devices. A passive technique, on the other hand, detects forgery using the behavioral cues encoded in a video. In this paper, a passive video forgery detection system based on frame similarity analysis is presented.Inter frame forgeries (Insertion, Deletion, and Duplication) were detected using the proposed technique, which was unaffected by scene changes.The technique has the overall performance of 98.07% precision, 100% recall and 99.01% accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Modelling of Post-COVID-19 Food Production Index in Nigeria using Box-Jenkins Methodology Sum-Rate Systematic Intercell Interference Coordination Techniques for5GHeterogeneous Networks Towards the Choice of Better Social Media Platform for Knowledge Delivery: Exploratory Study in University of Ilorin Schemes for Extending the Network Lifetime of Wireless Rechargeable Sensor Networks Design and Analysis of 1x4 and 1x8 Circular Patch Microstrip Antenna Array for IWSN Application
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1