利用LabVIEW对心电信号进行心血管心律失常和正常窦性心律的特征提取和表征

A. Zaidi, M. Ahmed, A. Bakibillah
{"title":"利用LabVIEW对心电信号进行心血管心律失常和正常窦性心律的特征提取和表征","authors":"A. Zaidi, M. Ahmed, A. Bakibillah","doi":"10.1109/ICIVPR.2017.7890871","DOIUrl":null,"url":null,"abstract":"Electrocardiogram (ECG) is a test that represents electrical activity of heart and plays an important role in monitoring the condition of the heart. The diagnosis of cardiac condition is greatly dependent upon ECG signals. This paper presents a method of feature extraction and characterization of ECG signals for normal sinus rhythm and three different types of cardiovascular arrhythmia, namely Slow Term Atrial Fibrillation, Paroxysmal Atrial Fibrillation and Supraventricular Tachycardia. The proposed algorithm is implemented using NI LabVIEW Biomedical Workbench to perform signal processing that extracts features of ECG signal such as heart rate, QRS width, PR interval, QT interval and the RR interval which are then used to characterize both cardiovascular arrhythmia and normal sinus rhythms. About Forty-five sets of data of ECG signals are used in this work for analysis and verification and satisfactory result is obtained.","PeriodicalId":126745,"journal":{"name":"2017 IEEE International Conference on Imaging, Vision & Pattern Recognition (icIVPR)","volume":"146 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Feature extraction and characterization of cardiovascular arrhythmia and normal sinus rhythm from ECG signals using LabVIEW\",\"authors\":\"A. Zaidi, M. Ahmed, A. Bakibillah\",\"doi\":\"10.1109/ICIVPR.2017.7890871\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Electrocardiogram (ECG) is a test that represents electrical activity of heart and plays an important role in monitoring the condition of the heart. The diagnosis of cardiac condition is greatly dependent upon ECG signals. This paper presents a method of feature extraction and characterization of ECG signals for normal sinus rhythm and three different types of cardiovascular arrhythmia, namely Slow Term Atrial Fibrillation, Paroxysmal Atrial Fibrillation and Supraventricular Tachycardia. The proposed algorithm is implemented using NI LabVIEW Biomedical Workbench to perform signal processing that extracts features of ECG signal such as heart rate, QRS width, PR interval, QT interval and the RR interval which are then used to characterize both cardiovascular arrhythmia and normal sinus rhythms. About Forty-five sets of data of ECG signals are used in this work for analysis and verification and satisfactory result is obtained.\",\"PeriodicalId\":126745,\"journal\":{\"name\":\"2017 IEEE International Conference on Imaging, Vision & Pattern Recognition (icIVPR)\",\"volume\":\"146 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Conference on Imaging, Vision & Pattern Recognition (icIVPR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIVPR.2017.7890871\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Imaging, Vision & Pattern Recognition (icIVPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIVPR.2017.7890871","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

心电图(Electrocardiogram, ECG)是反映心脏电活动的一项检测,在监测心脏状况方面起着重要作用。心脏疾病的诊断很大程度上依赖于心电信号。本文提出了一种对正常窦性心律和慢期心房颤动、阵发性心房颤动和室上性心动过速三种不同类型心血管心律失常的心电信号进行特征提取和表征的方法。该算法使用NI LabVIEW Biomedical Workbench实现,对心电信号进行信号处理,提取心率、QRS宽度、PR间隔、QT间期和RR间隔等特征,然后将其用于表征心血管心律失常和正常窦性心律。利用45组左右的心电信号数据进行分析验证,取得了满意的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Feature extraction and characterization of cardiovascular arrhythmia and normal sinus rhythm from ECG signals using LabVIEW
Electrocardiogram (ECG) is a test that represents electrical activity of heart and plays an important role in monitoring the condition of the heart. The diagnosis of cardiac condition is greatly dependent upon ECG signals. This paper presents a method of feature extraction and characterization of ECG signals for normal sinus rhythm and three different types of cardiovascular arrhythmia, namely Slow Term Atrial Fibrillation, Paroxysmal Atrial Fibrillation and Supraventricular Tachycardia. The proposed algorithm is implemented using NI LabVIEW Biomedical Workbench to perform signal processing that extracts features of ECG signal such as heart rate, QRS width, PR interval, QT interval and the RR interval which are then used to characterize both cardiovascular arrhythmia and normal sinus rhythms. About Forty-five sets of data of ECG signals are used in this work for analysis and verification and satisfactory result is obtained.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Smart material interfaces: Playful and artistic applications Detection of Interstitial Lung Disease using correlation and regression methods on texture measure Single cell mass measurement from deformation of nanofork Handwritten Arabic numeral recognition using deep learning neural networks Chord Angle Deviation using Tangent (CADT), an efficient and robust contour-based corner detector
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1