基于BaSrTiO3薄膜片级传输集成的宽带可调SAW滤波器用于电视空白无线局域网系统

H. Hirano, T. Samoto, Tetsuya Kimura, Masahiro Inaba, K. Hashimoto, T. Matsumura, K. Hikichi, M. Kadota, M. Esashi, Shuji Tanaka
{"title":"基于BaSrTiO3薄膜片级传输集成的宽带可调SAW滤波器用于电视空白无线局域网系统","authors":"H. Hirano, T. Samoto, Tetsuya Kimura, Masahiro Inaba, K. Hashimoto, T. Matsumura, K. Hikichi, M. Kadota, M. Esashi, Shuji Tanaka","doi":"10.1109/ULTSYM.2014.0197","DOIUrl":null,"url":null,"abstract":"Cognitive radio technology on TV white spaces has been promoted worldwide to solve the spectrum shortage problem due to the explosive increase in personal communication systems such as smartphones. One of the most difficult challenges to utilize TV white space for personal use is the miniaturization of frequency and bandwidth tunable filters to select vacant TV channels. We have developed a one-chip bandwidth tunable filter by wafer-level transfer-integration of BaSrTiO3 (BST) film varactors and surface acoustic wave (SAW) resonators on a lithium tantalate wafer. The 3 dB bandwidth of the bandwidth tunable filter is tuned between 3.25 MHz and 6.25 MHz by applying 7V to the varactors, while the center frequency was constant at 1.004 GHz, as designed. These filters were installed in our developed prototype cognitive radio systems based on the IEEE802.11af draft and successfully demonstrated wireless LAN communication on TV frequency band.","PeriodicalId":153901,"journal":{"name":"2014 IEEE International Ultrasonics Symposium","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Bandwidth-tunable SAW filter based on wafer-level transfer-integration of BaSrTiO3 film for wireless LAN system using TV white space\",\"authors\":\"H. Hirano, T. Samoto, Tetsuya Kimura, Masahiro Inaba, K. Hashimoto, T. Matsumura, K. Hikichi, M. Kadota, M. Esashi, Shuji Tanaka\",\"doi\":\"10.1109/ULTSYM.2014.0197\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cognitive radio technology on TV white spaces has been promoted worldwide to solve the spectrum shortage problem due to the explosive increase in personal communication systems such as smartphones. One of the most difficult challenges to utilize TV white space for personal use is the miniaturization of frequency and bandwidth tunable filters to select vacant TV channels. We have developed a one-chip bandwidth tunable filter by wafer-level transfer-integration of BaSrTiO3 (BST) film varactors and surface acoustic wave (SAW) resonators on a lithium tantalate wafer. The 3 dB bandwidth of the bandwidth tunable filter is tuned between 3.25 MHz and 6.25 MHz by applying 7V to the varactors, while the center frequency was constant at 1.004 GHz, as designed. These filters were installed in our developed prototype cognitive radio systems based on the IEEE802.11af draft and successfully demonstrated wireless LAN communication on TV frequency band.\",\"PeriodicalId\":153901,\"journal\":{\"name\":\"2014 IEEE International Ultrasonics Symposium\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE International Ultrasonics Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ULTSYM.2014.0197\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Ultrasonics Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ULTSYM.2014.0197","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

由于智能手机等个人通信系统的爆发式增长,为解决频谱不足的问题,在世界范围内推广了电视空白空间的认知无线电技术。利用电视空白空间供个人使用的最困难的挑战之一是频率和带宽可调滤波器的小型化,以选择空闲的电视频道。我们通过在钽酸锂晶圆上集成BaSrTiO3 (BST)薄膜变容体和表面声波谐振器,开发了一种单片带宽可调滤波器。通过对变容管施加7V,带宽可调滤波器的3db带宽在3.25 MHz和6.25 MHz之间调谐,中心频率按设计恒定在1.004 GHz。这些滤波器安装在我们开发的基于IEEE802.11af草案的原型认知无线电系统中,并成功演示了电视频段的无线局域网通信。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Bandwidth-tunable SAW filter based on wafer-level transfer-integration of BaSrTiO3 film for wireless LAN system using TV white space
Cognitive radio technology on TV white spaces has been promoted worldwide to solve the spectrum shortage problem due to the explosive increase in personal communication systems such as smartphones. One of the most difficult challenges to utilize TV white space for personal use is the miniaturization of frequency and bandwidth tunable filters to select vacant TV channels. We have developed a one-chip bandwidth tunable filter by wafer-level transfer-integration of BaSrTiO3 (BST) film varactors and surface acoustic wave (SAW) resonators on a lithium tantalate wafer. The 3 dB bandwidth of the bandwidth tunable filter is tuned between 3.25 MHz and 6.25 MHz by applying 7V to the varactors, while the center frequency was constant at 1.004 GHz, as designed. These filters were installed in our developed prototype cognitive radio systems based on the IEEE802.11af draft and successfully demonstrated wireless LAN communication on TV frequency band.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Carotid plaque assessment using non-invasive shear strain elastography Elastic modulus contrast enhancement in shear wave imaging using mechanical nonlinearity: In vitro tissue mimicking phantom study Tumor perfusion and neovascular morphology measurements using dynamic contrast-enhanced ultrasound imaging Application of a rigorous nonlinear P-matrix method to the simulation of third order intermodulation in test devices and duplexers Adaptive beamforming for thermal strain imaging using a single ultrasound linear array
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1